

Executive Summary

Remada Ltd was commissioned by Lidl Great Britain Ltd to conduct a Phase 2 Ground Investigation at the site of the existing B&M store and Garden Centre, Aberystwyth Road, Cardigan. This report follows a Phase 1 Preliminary Risk Assessment (Remada report reference 941.01.01 dated January 2022).

Summary of Phase 1 Desk Study

The earliest available historical map dated 1888 records a small building and a water works within the site boundary. By 1965 a garage was constructed in the eastern zone of site and by 1980 a depot was constructed in the western zone. It is understood that the existing retail unit was constructed in 2007 as a Focus DIY and subsequently became occupied as B&M store in 2016.

Published geological maps record that the site is underlain by Devensian Till, a Secondary (Undifferentiated) Aquifer Dinas Sand Formation designated as a Secondary (B) Aquifer.

Intrusive Investigation

The investigation comprised the drilling of nine (9 No) window sample holes (WS01 – WS09) and execution of four (4 No) CBR tests at locations indicated on Figure 2 between 22nd and 23rd October 2025. Due to the B&M store and Garden Centre being fully operational during the day, investigation was carried out during a night shift, with majority of the works being completed after daylight.

Made Ground was encountered in all the exploratory holes from surface level to a maximum depth of 3.2m.

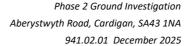
Natural deposits were encountered within boreholes WS01-WS03 and WS06-WS09. The material was generally described as a stiff, slightly sandy to sandy slightly gravelly to gravelly locally silty CLAY or a sandy clayey GRAVEL. Gravel was recorded as mudstone, sandstone and quartzite. Natural deposits were encountered to the base of all exploratory holes where encountered to a maximum depth of 7.0m.

Human Health Assessment

The results of soil chemical analysis were compared to Human Health Generic Assessment Criteria for commercial land use. None of the analytes tested were detected at concentrations that exceeded the human health GAC protective of on-site workers.

Water Resources Assessment

The results of the soil chemical analysis undertaken has identified that concentrations of metals and inorganic contaminants are within the range of typical Made Ground. Detectable concentrations of TPH and PAHs were encountered in some samples. However, the contaminants identified are of low solubility and mobility and as such are unlikely to present a risk to groundwater beneath the site. In addition, it should be noted that the site will be predominantly covered with the building and areas of hardstanding. Therefore, the risk of leaching of contaminants as a result of infiltration of groundwater is likely to be limited. Therefore, the risk to groundwater from contaminants within the Made Ground at the site is considered to be low and does not warrant further consideration.


Waste Classification

In general, the results of the chemical analysis indicates that the material would be classified as non hazardous waste.

Waste Acceptance Criteria (WAC) analysis was undertaken on three samples of Made Ground. Within the samples from WS01 at 0.70m bgl and WS08 at 0.60m bgl, the concentration of total sulphate (1500mg/kg and 2100mg/kg respectfully) exceeded the 1000mg/kg threshold for acceptance as Inert Waste. Consequently, the material represented by these samples would likely be classified as non-hazardous waste. The samples from WS04 at 1.70m would potentially be classified as suitable for disposal at an Inert Waste Landfill.

Two samples of bituminous surfacing were analysed for concentrations of PAH compounds. The results indicated that the concentrations of PAHs were generally low (total PAH concentration of 1,000mg/kg) and the concentration of benzo(a)pyrene of < 0.05mg/kg was well below the 50mg/kg limit defined in WM3. Therefore, the bituminous surfacing represented by these samples (WS05 and WS06) would be classified as non hazardous waste and assigned the List of Wastes code 17 03 02 for bituminous mixtures other than those mentioned in 17 03 01.

Geotechnical Assessment

In order for pad foundations for the proposed store to bear on natural soils, the formation level would be approximately 3.2m bgl in the western part of the site. In order for to construct shallow foundations it would be necessary to improve the ground.

The existing Made Ground and fill material is variable in terms of SPT N values and the advice of a specialist ground improvement contractor should be obtained with regard to achieving a suitable minimum bearing capacity for the proposed development. Alternatively, following demolition and site clearance it may be possible to excavate and recompact the existing Made Ground to a minimum specified bearing capacity. If the existing Made Ground is not recompacted to a suitable bearing capacity for either a raft or ground bearing floor slab, it will be necessary to suspend the floor slab on piled foundations.

CBR values estimated from the DCP tests indicated that near surface, the CBR values recorded were >80%. Poorly compacted Made Ground backfill resulting from the demolition works should be excavated, processed as necessary to produce a 6F2 material and replaced in compacted layers in

A Design Sulphate Class DS-2 is considered appropriate for buried concrete and an ACEC Class of AC-1s is considered appropriate for the location.

Ground Gas

The results of four rounds of gas monitoring visits placed the site into Characteristic Situation 1 and therefore ground gas protection measures for methane and carbon dioxide will not be required within the proposed buildings.

The site is in a higher radon probability area and as such full Radon protection measures will be required.

Contents

1	INTR	ODUCTION	4
	1.1	OBJECTIVES	4
	1.2	SCOPE OF WORK	
	1.3	PROPOSED DEVELOPMENT	4
	1.4	Previous Reports	5
	1.5	LIMITATIONS	5
2	SUM	MMARY OF PHASE 1 DESK STUDY	6
3		E WALKOVER	
4		/IRONMENTAL & GEOTECHNICAL INVESTIGATION METHODOLOGY	
	4.1	Investigation Strategy	
	4.2	INTRUSIVE INVESTIGATION	
	4.3	In-Situ Testing	
	4.4	SOIL SAMPLING	
	4.5	GAS & GROUNDWATER	10
	4.6	QUALITY ASSURANCE AND QUALITY CONTROL	
	4.7	LABORATORY ANALYSIS & TESTING	
5	GEO	DTECHNICAL & ENVIRONMENTAL INVESTIGATION FINDINGS	12
	5.1	GROUND CONDITIONS	12
	5.2	In-situ Testing.	
	5.3	SOIL OBSERVATIONS	
	5.4	GROUNDWATER OBSERVATIONS	
	5.5	CHEMICAL ANALYSIS.	
	5.6	GEOTECHNICAL TESTING	
	5.7	GROUND GAS MONITORING RESULTS	
6	GEN	NERIC QUANTITATIVE RISK ASSESSMENT	
U		HUMAN HEALTH RISK ASSESSMENT	
	6.1		
	6.2	COMPARISON OF SOIL ANALYSIS RESULTS WITH HUMAN HEALTH GAC	
	6.3	CONTROLLED WATERS RISK ASSESSMENT	
	6.4	GROUND GAS ASSESSMENT	
	6.5	REVISED CONCEPTUAL SITE MODEL	
	6.6	WASTE CLASSIFICATION & WASTE ACCEPTANCE	
	6.7	HEALTH & SAFETY CONSIDERATIONS	
7	GEO	DTECHNICAL SITE ASSESSMENT	
	7.1	GEOTECHNICAL CONSIDERATIONS	
	7.2	FOUNDATIONS	
	7.3	SHRINKAGE AND SWELLING	
	7.4	FLOOR SLAB	
	7.5	IMPORTED FILL	
	7.6	EXCAVATIONS AND TEMPORARY WORKS	
	7.7	EXTERNAL CAR PARK CONSTRUCTION	
	7.8	PROTECTION OF BURIED CONCRETE	
	7.9	GENERAL CONSTRUCTION ADVICE	23
8	CON	NCLUSIONS & RECOMMENDATIONS	24
	8.1	Conclusions	24
	8.2	RECOMMENDATIONS	
	8.3	GROUND GAS	
СŦ		MITATIONS	
31	ODY LIN	WITATIONS	21
TΑ	ABLES		
	ible 1	Outline Conceptual Site Model	
	ible 1 ible 2	Gas & Groundwater Monitoring Data	
	ible 2 ible 3	Comparison of Soil Chemical Analyses with GAC	
ıa	いいにつ	Companson of son Chemical Analyses with GAC	

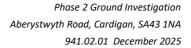


Table 4 Refined Conceptual Site Model

Table 5 NHBC 2025 Minimum Foundation Depths

GRAPHS

Graph 1 Plot of Corrected SPT N Values vs Depth Graph 2 Plot of Mass Shear Strength vs Depth

Graph 3 PAH Double Ratio Plots

FIGURES

Figure 1 Site Location Plan

Figure 2 Existing Layout and Exploratory Location Plan
Figure 3 Proposed Layout and Exploratory Location Plan

EXPLORATORY HOLE LOGS

APPENDICES

Appendix A SPT Hammer Energy Test Certificate
Appendix B Dynamic Cone Penetrometer Test Results
Appendix C Gas Analyser Calibration Certificate
Appendix D Laboratory Chemical Analyses
Appendix E Laboratory Geotechnical Tests

Is	sue No	Date	Prepared By		Technical Revi	ew	Authorise	d
02	1	04.12.2025	J Hughes	2. Hugues	P Searing	TM/	G Jones	<u> Phoner</u>

1 INTRODUCTION

Remada Ltd was commissioned by Lidl Great Britain Ltd (hereafter 'the Client') to undertake a Phase 2 Ground Investigation of the existing B&M store and Garden Centre, Aberystwyth Road, Cardigan, **SA43 1NA** at the location indicated in **Figure 1**.

1.1 Objectives

The objectives of this assessment are as follows:

- to examine whether there have been any potentially contaminative uses on the site or nearby land;
- to develop a conceptual model of the site to identify plausible pollutant linkages;
- to assess ground conditions in relation to the proposed development in relation to construction design
 issues including the presence, nature, likely severity and extent of soil and groundwater contamination,
 which may be present, its potential environmental impact and likely requirement for further work; and
- Provide preliminary foundation design recommendations for the proposed development.

1.2 Scope of Work

The scope and layout of this investigation and report is generally in accordance with BS10175:2011+A2 2017 and the Environment Agency's Land Contamination Risk Management guidance for land contamination reports.

The scope of work comprised:

- 5 No window samples with SPTs at 1m intervals to a target depth of 7.0m within the footprint of the store and delivery pod area to prove competent natural strata
- 4 No Window samples including SPTs at 1m intervals to a minimum depth of 5.0m within the car park / delivery bay area to prove natural strata.
- 3 No gas / groundwater monitoring wells.
- 4 No rounds of gas/groundwater monitoring at different atmospheric pressures.
- 4 No CBR tests within the car park area on Made Ground or natural soil that will be at the development formation level. In the absence of any specific information the pavement formation level shall be considered to be a maximum of 500mm below the existing ground level or below organic topsoil.
- Suite of geotechnical classification and strength tests as appropriate to the soils and 4 No BRE Sulphate suites in accordance with BRE SD1.
- 5 No Chemical Analysis for asbestos (quantitative), pH, Arsenic, Beryllium, Cadmium, Chromium (trivalent & hexavalent), Copper, Mercury, Nickel, Lead, Selenium, Vanadium, Zinc, Fraction of Organic Carbon, TPHCWG, PAH(16) and Phenol.
- 3 No WAC tests
- 2 No bitumen suites on asphalt samples for waste classification.; and
- Combined Factual & Interpretative Geoenvironmental Report.

The investigation methodology is presented in Section 4, Findings in Section 55 and the Exploratory Locations are indicated in **Figure 2.**

1.3 Proposed Development

It is understood that the proposed site use for the majority of the site will be a Lidl retail store with associated car park and soft landscaping as shown in **Figure 3**.

1.4 Previous Reports

The following Phase 1 Desk Study had been previously prepared for the site:

• Phase 1 Site Investigation & Preliminary Risk Assessment. Remada Ltd Report ref: 941.01.01, issued in January 2022.

1.5 Limitations

The comments given in this report and the opinions expressed are based on the information reviewed and observations during site work. However, there may be conditions pertaining to the site that have not been disclosed by this assessment and therefore could not be taken into account.

2 SUMMARY OF PHASE 1 DESK STUDY

The Executive Summary and Conceptual Site Model presented within the Phase 1 Desk Study are reproduced below:

Site Setting

The site comprises an operational B&M store and Garden Centre with its associated car park, occupying a roughly rectangular plot to the north of B4548 Aberystwyth Road, Cardigan as indicated in **Figure 2**. The existing store's footprint is rectangular and is in the north of the site, and to the west of the store there is a separate fenced off area for the garden centre which occupies the north-west and south-west sections of the site. The remainder of the site area forms the store's associated car park and soft landscaping. The existing car park is formed from level bituminous surfacing with a kerb edge. It is understood that the proposed site use of the site will be a Lidl retail store with associated car park and soft landscaping.

It is understood that the proposed site use of the site will be a Lidl retail store with associated car park and soft landscaping. This development will comprise a site area of 7500m² fronting onto B4548 Aberystwyth Road, as shown in **Figure 3**.

Site History

The earliest available historical map dated 1888 records a small building and a water works within the site boundary. By 1965 a garage was constructed in the eastern zone of site and by 1980 a depot was constructed in the western zone. It is understood that the existing retail unit was constructed in 2007 as a Focus DIY and subsequently became occupied as B&M store in 2016.

Geology / Hydrogeology

Published geological maps record that the site is underlain by Devensian Till, a Secondary (Undifferentiated) Aquifer Dinas Sand Formation designated as a Secondary (B) Aquifer.

Mining

The site is not located within an area which may be affected by coal mining activity.

Radon

The site is located in Higher Probability Radon Area as 10 to 30% of homes are estimated to be at or above the Action Level. Full radon protective measures are necessary.

Environmental Risk Assessment

The desk study has identified a number of on-site and off-site potential sources of contamination that would require further investigation. The following is recommended:

- Investigation of the lateral and vertical extent of Made Ground/fill beneath the proposed store;
- Collection of soil and groundwater samples from the areas identified above for contaminants of concern; and
- Ground gas monitoring.

Geotechnical Assessment

It is recommended that a ground investigation is undertaken to enable preliminary foundation design.

Potential Source Areas	Potential Contaminant of Concern	Pathways	Potential Receptor	Exposure Route (Human unless otherwise stated)	Potential Identified Linkage (unmitigated)	Findings of Ground investigation	Risk (Un-mitigated)	Proposed Remediation (Mitigation) Measures	Residual Risk Estimation
On-site Sources				Direct Soil Ingestion	Yes	To be assessed (TBA)	Potential risk	(To be assessed (TBA)	(To be assessed (TBA)
Water Works		Disturbance due to construction plant		Indoor Dust ingestion	Yes	As above	Potential risk	TBA	TBA
Covered reservoir tank		causing direct contact, dusts, vapours.	Occupants of	Skin Contact with Soils	Yes	As above	Potential risk	TBA	ТВА
Garage Depot	Asbestos / Metals As, Be, Cd, Cu, Cr		the development /	Skin Contact with Dust	Yes	As above	Potential risk	ТВА	ТВА
	(VI), Cr (III) Hg, Ni,	Direct Contact with	building fabric	Inhalation of Outdoor Dust	Yes	As above	Potential risk	TBA	TBA
Operational B&M store	Se, Va, Zn, Boron, TPH /PAH / BTEX/ MTBE /	occupants of the proposed development		Inhalation of Outdoor Vapours	Yes	As above	Potential risk	ТВА	ТВА
and car parking	VOCs/sVOCs	Inhalation of fibres / vapours / gases by	Adjacent residents	Inhalation of Indoor Vapours	Yes	As above	Potential risk	TBA	ТВА
Off-site Sources		occupants of proposed	during	Inhalation of ground gas	Yes	As above	Potential risk	TBA	TBA
Petrol filling station		development	Secondary	Inhalation of radon gas	Yes	N/A	Higher probability radon area	Full radon protective measures are necessary.	Negligible
		Permeation of water supply pipework	(undifferentiat ed) Aquifer & secondary (B)	Ingestion via permeated water supply pipework	Yes	As above	Potential risk	TBA	ТВА
			aquifer	Direct contact with Secondary (undifferentiated) Aquifer in Superficial Deposits	Yes	As above	Potential risk	ТВА	ТВА
		Leachate		In-direct contact with Secondary (B) Aquifer in bedrock	Yes	As above	Potential risk	ТВА	ТВА

Table 1: Outline Conceptual Site Model

Direct contact with subsurface soil and/or groundwater during redevelopment works are not assessed as part of the CSM. It is considered that risks to workers will be managed as part of any the redevelopment works at the site through the application of health and safety procedures, where required.

3 SITE WALKOVER

The opportunity was taken to inspect the existing B&M store and Garden Centre at the site for the proposed Lidl store on 23rd October 2025 by Joseph Hughes of Remada Ltd during the intrusive works, as recorded in the photographs below. There were no visual or olfactory indicators of contamination.

Photo 1: The southwestern site boundary with a gated entrance to the courtyard and storage area of the B&M store and Garden Centre.

Photo 2: A view towards the south of the site, showing the carpark entrance from B4548 Aberystwyth Road and showing the height difference between the car park and service yard.

Photo 3: A view of the Garden Centre where window sample (WS01) is located.

Photo 4: A view towards the north showing the existing carpark and B&M store.

Photo 5: A view towards the south-east

Photo 6: A view towards the north-east corner of the site

4 ENVIRONMENTAL & GEOTECHNICAL INVESTIGATION METHODOLOGY

4.1 Investigation Strategy

In accordance with Lidl Ground Investigation standard 05.2023, five (5 No). window sample holes were required beneath the proposed store footprint to a depth of 7m or refusal, and four (4 No) beneath the delivery bay, HGV access and car park to a depth of 5m or refusal. Four (4 No) CBR tests were conducted in the proposed car park. Four (4 No) ground gas monitoring visits were scheduled for the site to provide the minimum required by C665.

The investigation comprised the drilling of nine (9 No) window sample holes (WS01 – WS09) and execution of four (4 No) CBR tests at locations indicated on **Figure 2** between 22nd and 23rd October 2025. Due to the B&M store and Garden Centre being fully operational during the day, investigation was carried out during a night shift, with majority of the works being completed after daylight.

Exploratory locations were selected to enable an investigation of ground conditions beneath the proposed retail store and car park. With the site comprising a B&M store and Garden Centre, it was anticipated that there would be a variable thickness of Made Ground at the site.

Due to the existing store being operational at the time of the Investigation no boreholes could be drilled within the footprint of the existing building however under the proposed plans the existing footprint is to largely to become car parking

All exploratory holes were logged by a suitably qualified Geo-environmental Engineer in general accordance with the recommendations of BS5930:2015+A1:2020. Detailed descriptions, together with relevant comments, are given in the **Exploratory Hole Logs**.

4.2 Intrusive Investigation

4.2.1 Window Sample Holes

Two of the window samples (WS02 - WS03) were advanced to a target depth of 7m within the proposed store footprint, with WS01 to a depth of 6m and WS04 to 2.2m. Four window samples (WS06 - WS09) in the proposed car park were advanced to a depth of 3m. WS05 refused at 0.7m so it was moved slightly north but refused again at 0.6m, and due to time restraints of work, wasn't moved again. In addition borehole WS06 to WS09 where advanced past 3m bgl by continuous SPT with no sample recovery made due to time constraints. Combined Groundwater and Ground Gas monitoring standpipes were installed in WS01 and WS02, however due to shallow refusal in WS05, a standpipe was unable to be installed.

4.3 In-Situ Testing

4.3.1 Standard Penetration Tests

Standard Penetration Tests (SPTs) in the window samples were carried out at 1.0m intervals as recorded on the borehole logs to assess the relative density and consistency of soils. Within boreholes WS06-WS09 once 3m was reach SPTs were carried out every 0.5m until refusal.

SPTs were conducted in accordance with BS EN ISO 22476-3 and the recorded SPT N-values are summarised on the borehole logs.

The SPT N-values have been corrected based on the Energy Ratio of 96% for the SPT hammer on the window sampling rig. The SPT Hammer Energy Test Report, undertaken in accordance with BS EN ISO 22476-3:2005 is presented in **Appendix A.**

4.3.2 Hand Shear Vane

Hand shear vane tests were undertaken using an Impact SL810 and in general accordance with the manufacturer's instructions on selected samples of cohesive soils.

4.3.3 Dynamic Cone Penetrometer (DCP) Tests

Four DCP tests were conducted in order to determine California Bearing Ratio (CBR) values for near surface soils, at the locations in **Figure 2**. A known mass is dropped through a known distance to drive a cone into the ground. The penetration distance per blow is recorded in order to enable the CBR value to be calculated. Test results are presented in **Appendix B**.

4.4 Soil Sampling

4.4.1 Environmental

Made Ground and natural soils were selected by visual and olfactory means for subsequent analysis. Samples for chemical laboratory testing purposes were collected in amber glass jars, amber glass vials and plastic tubs and retained in a cool box for transport to the laboratory.

4.4.2 Geotechnical

Geotechnical samples were collected at depths indicated on the window sample logs with samples retrieved from within a sleeve line. The disturbed samples were placed in sealed and correctly labelled plastic tubs or bags as appropriate. All geotechnical samples were dispatched to the laboratory for testing with a completed chain of custody.

4.5 Gas & Groundwater

4.5.1 Installations

Combined ground gas and groundwater monitoring standpipes were installed in selected wells with a 50mm diameter slotted HDPE pipe and packed with gravel surround as recorded on the exploratory logs. Wells were completed with 1.0 - 2.0m of plain HDPE pipe and bentonite seal, with a gas bung and tap being installed at the top of the pipe.

4.5.2 Monitoring

Ground gas monitoring was undertaken using a GasData GFM436 gas analyser for the parameters reported below. Groundwater levels were measured with a GeoSense OWP30 oil water interface probe.

Permanent ground gas monitoring involved the measurement of the following in the prescribed order:

- Pressure difference between the monitoring well and the atmosphere,
- Peak and steady flow rates of gas into or out of the monitoring well;
- Peak and steady concentrations of carbon dioxide, methane, oxygen (minimum and steady recorded), carbon monoxide, hydrogen sulphide; and
- Depth to groundwater.

Four ground gas monitoring visits were undertaken as a minimum required for a commercial development in accordance with CIRIA C665. Ground gas concentrations were recorded on 31st October and 7th,12th and 21st November 2025 at WS01 and WS02, and the results are presented in **Table 2**. The corresponding Calibration Certificate for the GFM436 gas analyser is presented in **Appendix C**.

4.6 Quality Assurance and Quality Control

All samples were submitted to a United Kingdom Accredited Laboratory (UKAS) under a completed chain of custody. The laboratory carried out its own QA/QC programme to ensure that the quality of the analytical data conformed to the appropriate test method protocols.

4.7 Laboratory Analysis & Testing

4.7.1 Chemical Analysis - Soil

Five (5 No) soil samples were scheduled for the analysis of asbestos, arsenic, barium, beryllium, cadmium, chromium (III & VI), copper, mercury, nickel, lead, selenium, zinc, fraction of organic carbon, Total Petroleum Hydrocarbons (TPHCWG), Polyaromatic Hydrocarbons (PAH), BTEX compounds (benzene, toluene, ethylbenzene and xylene) and phenols.

In addition, two (2 No) samples of bituminous surfacing were analysed for PAH compounds.

The results of laboratory chemical analyses are presented in **Appendix D.**

4.7.3 Geotechnical

Samples recovered from the boreholes were submitted to an accredited laboratory for the following tests in general accordance with BS1377:1990:

- 5 No Natural Moisture Contents
- 5 No Plasticity Indices
- 3 No Particle Size Distribution tests; and
- 4 No BRE SD1 suites

The results of the geotechnical testing are presented in **Appendix E.**

5 GEOTECHNICAL & ENVIRONMENTAL INVESTIGATION FINDINGS

5.1 Ground Conditions

A brief description of the published geology is provided together with a summary of the ground conditions encountered during the intrusive investigation. Exploratory logs are presented at the end of the report.

5.1.1 Published Geology

The geological mapping indicates that the superficial deposits underlying the site are indicated to comprise Devensian Till (Irish Sea ice). The BGS describe Devensian Till as typically comprising 'unsorted and unstratified drift, generally overconsolidated, deposited directly by and underneath a glacier without subsequent reworking by water from the glacier. It consists of a heterogenous mixture of clay, sand, gravel, and boulders varying widely in size and shape (diamicton)'.

Bedrock directly underlying the site is formed of the Dinas Island Formation separated from the Nantmel Mudstones Formation by two broadly parallel fault lines situated a short distance the north and south of the site. The BGS describes the Dinas Island Formation as 'Mudstone and sandstone. Stratified bedrock. Occurs onshore. Deposited during the Caradoc Series (Ordovician Period)'.

The superficial deposits of Devensian Till are designated as secondary (undifferentiated) Strata. The Dinas Island Formation is classified as a Secondary (B) Aquifer. The site is not located within a Source Protection Zone.

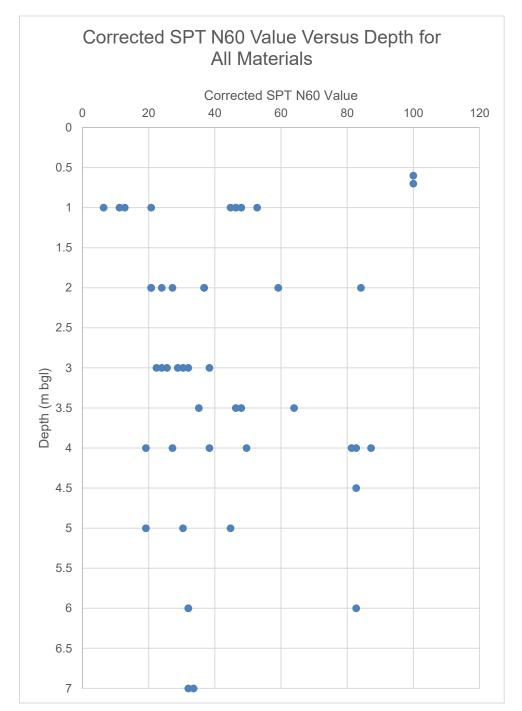
5.1.2 Made Ground

Exploratory holes within the garden centre area/service yard (WS01 to WS04) encountered a concrete surface with rebar to a maximum depth of 0.23m bgl (WS03) with an average thickness of 0.22m. A membrane was encountered at the base of each concrete core. Below the concrete surface, Made Ground was recorded as either a gravelly slightly clayey sand, a slightly sandy gravelly clay, a sandy slightly clayey gravel or a gravelly sand to a maximum depth of 3.20m bgl, though the base of the Made Ground was not encountered within borehole WS04, with an average thickness of 2.08m. Gravel was recorded as concrete, brick, mudstone, slate, and asphalt

Exploratory holes located in the existing car park area (WS05 - WS09) encountered bituminous surfacing at ground level to a maximum depth of 0.27m bgl (WS05a), though the base of the Made Ground was not encountered within boreholes WS05 and WS05a, with an average thickness of 0.18m, overlying a layer either slightly sandy to very sandy slightly clayey to clayey gravel, gravelly sand or sandy gravelly clay to a maximum depth of 2.1m (WS06) with an average thickness of 0.93m. Gravel was recorded as concrete, brick, sandstone, mudstone, slate and porcelain.

5.1.3 Natural Deposits

Natural deposits were encountered within boreholes WS01-WS03 and WS06-WS09. The material was generally described as a stiff, slightly sandy to sandy slightly gravelly to gravelly locally silty CLAY or a sandy clayey GRAVEL. Gravel was recorded as mudstone, sandstone and quartzite. Natural deposits were encountered to the base of all exploratory holes where encountered to a maximum depth of 7.0m.

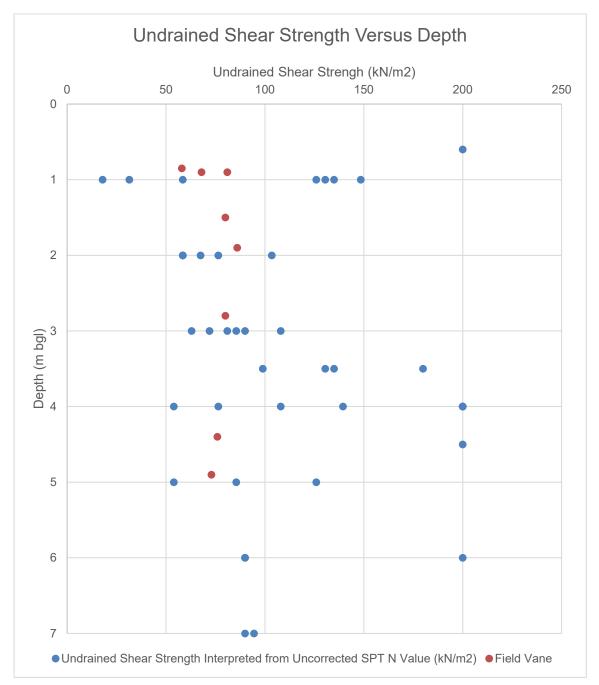

5.2 In-situ Testing

5.2.1 Standard Penetration Tests (SPTs)

In-situ SPTs were undertaken to assist with the interpretation of strata encountered. The results of corrected N-values versus depth are plotted in the graph below. Where the corrected N-value >100, the plotted value = 100

Graph 1: Plot of Corrected SPT N-Values Versus Depth

Undrained shear strengths have been estimated from SPT N values using the relationship developed by Stroud (*The standard penetration test in incentive clays and soft rocks*) and summarised in Tomlinson where:


Mass shear strength = $f_1 \times N$

Where f_1 is based on the plasticity index.

A Plasticity Index of 35% has been assumed (based on geotechnical laboratory testing) which equates to an f_1 factor of 4.5. Where the calculated sheer strength is >200kN/m² then the plotted number = 200

Graph 2: Plot of Mass Shear Strength Versus Depth With Remada's Design Lines

The Coefficient of Consolidation, Mv, of the cohesive soils can be estimated from the correlation between Plasticity Indices (PI) and SPT N values (Ref. 12) described by Equation 2.

 $Mv=1/(f_2 \times SPT N)$ Equation 2 Where:

Mv is the coefficient of consolidation f_2 is the Stroud Factor determined from Figure 1.5 SPT N is Characteristic Standard Penetration Test Result

5.2.2 Hand Shear Vane

The results ranged between 39kPa (in WS02 at 2.9m bgl) and 106kPa (in WS04 at 1.1m bgl). The hand shear vane test results have been plotted along with the results interpreted from the SPT N values in **Graph 2**.

5.2.3 CBR Tests

The results of the four DCP tests within the proposed car park area produced values of between 11.5% and >100% within the upper 500mm.

5.3 Soil Observations

Made Ground was recovered at all locations as a heterogeneous granular material containing a variety of man-made materials including brick, concrete, asphalt and porcelain.

There were no visible or olfactory indicators of contamination within the sampled soils.

5.4 Groundwater Observations

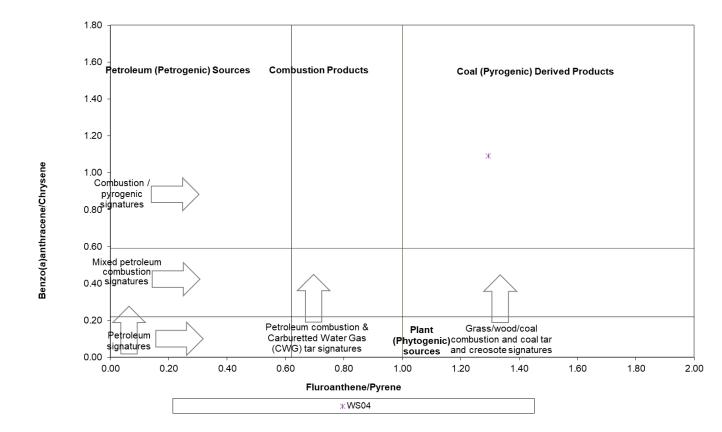
Groundwater seepages were noted in three of the window samples (WS02, WS03 and WS09) at depths of between 3.9, 3.8 and 1.65m bgl respectively. Groundwater levels were also recorded in the monitoring wells installed in two of the window sample holes at depths of between 1.32 and 2.95m bgl.

5.5 Chemical Analysis

5.5.1 Soils

Results of the soil chemical analysis are presented in Table 3 and summarised as follows.

The average FOC and pH was 0.003 and 8.8, respectively. Asbestos was not detected in the samples analysed. Detectable concentrations of metals were identified, although these are generally within the range that would typically be expected for Made Ground.


Concentrations of TPH were detected above method detection limit (MDL) in three of the samples analysed (from WS01, WS03 and WS04). The hydrocarbons were generally heavy end hydrocarbons within the range C21 to C35 carbon range.

Concentrations of PAHs were generally low (2 mg/kg). A maximum concentration (excluding bituminous surfacing sample) of 11.5 mg/kg was encountered in WS04 at 1.7m.

In addition, the PAH concentrations have been plotted on a double ratio plot to provide an indication of the likely source of the PAHs. All of the samples that had detections of the four PAHs used have been plotted and all are indicated to be coal derived product related PAHs which could be associated with urban background sources.

Graph 4: PAH Double Ratio Plot

Two samples of the asphalt surfacing taken from WS05 and WS06 were tested for the presence of PAH 17. These samples recorded a total PAH 17 concentration less than the method of detection limit of <0.85mg/kg.

5.6 Geotechnical Testing

Results of the geotechnical testing are summarised below.

5.6.1 Plasticity Testing

Plasticity testing was undertaken on five (5 No.) samples of cohesive soils recovered from the window sample boreholes, with the results ranging between 28% and 44%. These indicate the soils to be of high (CH) plasticity, and medium to high volume change potential as summarised in **Table 5** below:

Location	Depth (m)	Plasticity Index (%)	Passing .425mm (%)	Modified Plasticity Index	Volume Change Potential
WS02	2.9	37	85	31.5	Medium
WS03	5.8	31	88	27.3	Medium
WS04	1.2	38	86	32.7	Medium
WS06	2.7	28	100	28	Medium
WS07	1.6	41	100	41	High

Table 5: Plasticity Indices and Volume Change Potentials of the Cohesive Strata

5.6.2 Particle Size Distribution (PSD) Analysis

The PSD tests revealed the following:

- Natural deposits in WS01 at 4.0 5.0m comprised brown slightly fine to medium gravelly, fine to coarse sandy, silty CLAY.
- Natural deposits in WS02 at 4.0 5.0m comprised brown slightly fine gravelly, slightly fine to coarse sandy, silty CLAY.
- Natural deposits in WS03 at 2.0 3.0m comprised grey silty, fine to coarse sandy, fine to coarse GRAVEL.

5.6.3 BRE SD1 Analysis

The water-soluble sulphate contents varied from 114 to 1460 mg/l in the four soil samples analysed with pH varying from 7.6 to 8.3. The total sulphur content varied from 0.026 to 0.13% and acid soluble sulphate varied from 0.037 to 0.243%.

5.7 Ground Gas Monitoring Results

The results of the ground gas and groundwater monitoring programme are summarised below:

- A maximum steady state concentration of methane was recorded as of 0.3% v/v in both WS01 and WS02 on 12th November 2025 and in WS01 on 21st November 2025;
- A maximum steady state concentration of Carbon Dioxide was recorded as 1.1% v/v in WS02 on 21st
 November 2025. Detectable concentrations of carbon dioxide were recorded in both the monitoring wells;
- A minimum steady stated concentration of Oxygen was recorded 19.2% v/v in WS02 on 31st October 2025;
- Ground gas flow rates were recorded at a maximum of 0.6 litres per hour (I/hr) in WS02 on 21st November 2025;
- Groundwater was encountered within all standpipes over the course of the monitoring programme at depths between 1.32 to 2.95m bgl; and,
- Atmospheric pressure at the time of sampling varied between a high of 1023 millibar (mbar) on 21st
 November 2025 and a low of 988 mbar on 31st October 2025. The monitoring visits were undertaken during periods of rising and falling pressure trends over the preceding forty-eight hours.

6 GENERIC QUANTITATIVE RISK ASSESSMENT

6.1 Human Health Risk Assessment

In order to provide an up to date assessment of the risks to human health, Remada has adopted the most recent Generic Assessment Criteria (GAC) published by LQM/CIEH (S4ULs) and CL:AIRE/EIC/AGS for the assessment of potential risks to human health. The derivation of GAC, methodology, input parameters and technical guidance (CLEA) may be obtained upon request.

The proposed site layout retail store and car park is presented in Figure 3.

Default parameters have been adopted for sandy loam of pH 7 and commercial land use. FOC ranged from less than method of detection limit of <0.001 to 0.013 giving a Soil Organic Matter (SOM) content range of between 0.17 to 2.24% with an average result of 0.58%. In order to present a conservative assessment, the SOM content of 1% has been adopted for the assessment.

The depth to potential sources of contamination for indoor air pathways has been assumed to be 0.5m below building foundation level. The source has been conservatively assumed to be at ground level for outdoor air and direct contact pathways.

For commercial land use the CLEA version 1.06 critical receptor is conservatively modelled as a female working adult with an exposure duration of 49 years. In accordance with the default parameters, it was assumed that employees spend most of their time indoors and that 80% of outdoor area is covered by hardstanding. As such, the potential exposure pathways have been assumed to be:

- Direct Soil and Indoor Dust Ingestion;
- Skin contact with soils and dusts;
- Inhalation of indoor and outdoor dusts and vapours.

Where GAC values for individual TPH fractions are not exceeded, the potential additive effect has been assessed by calculating overall TPH hazard index for each sample.

6.2 Comparison of Soil Analysis Results with Human Health GAC

A comparison of soil chemical analysis with GAC is presented as Table 3.

TPH, PAH & BTEX

None of the analytes tested were detected at concentrations that exceeded the human health GAC protective of on-site workers.

Metals & Inorganics Excluding Asbestos

None of the analytes tested were detected at concentrations that exceeded the human health GAC protective of on-site workers.

<u>Asbestos</u>

There was no asbestos detected in the samples selected for analysis.

6.3 Controlled Waters Risk Assessment

6.3.1 Sensitivity – Groundwater

The site is not indicated to be within a Groundwater Source Protection Zone. The superficial deposits of Devensian Till underlying the site is designated as Secondary Undifferentiated Aquifer, where it is not possible to designate it as 'A' or 'B'. The Dinas Island Formation underlaying the site is designated as a Secondary 'B' Aquifer. There are no groundwater abstractions recorded within 1km of the site.

6.3.2 Sensitivity – Surface Waters

The nearest surface water feature is located 88m to the east of the site boundary. There is a surface water abstraction recorded within 965m west of the site.

6.3.3 Risk Assessment

The results of the soil chemical analysis undertaken has identified that concentrations of metals and inorganic contaminants are within the range that would be expected for 'typical' Made Ground. Detectable concentrations of TPH and PAHs were encountered in some samples. However, the contaminants identified are of low solubility and mobility and as such are unlikely to present a risk to groundwater beneath the site.

The groundwater was encountered at depths of between 1.32m and 2.95m bgl within Remada's standpipes across the area of the site during the monitoring programme.

Post-development, the site will continue to be predominantly covered by a retail building and areas of hardstanding. Consequently, the risk of leaching of contaminants as a result of infiltration of groundwater is limited. Therefore, the risk to controlled waters from contaminants within the Made Ground at the site is considered to be low and does not warrant further consideration at this stage.

6.4 Ground Gas Assessment

In order to understand the gassing regime at the site, a Characteristic Situation (as defined in CIRIA C665 and BS8576:2013) is determined for the site. CIRIA C665 and BS8576 provides definitions for each Characteristic Situation based on Gas Screening Values (GSV) which are calculated as follows:

• GSV = Gas Concentration (% v/v) x Measured Borehole Flow Rate (I/hr)

BS8576 makes a distinction between the GSV and the Hazardous Gas Flow Rate (Q_{hg}) which is also calculated using the above calculation. BS8576 states that Q_{hg} is calculated for each individual borehole for each monitoring visit, whereas the GSV is taken as the representative value for the site or site zone.

As a worst case assessment, the GSV for the site is therefore taken as the maximum steady-state carbon dioxide/methane concentration recorded in the boreholes which is multiplied by the maximum flow rate recorded during the same monitoring event.

- Methane GSV = 0.3 % x 0.6 l/hr = 0.0018 l/hr
- Carbon Dioxide GSV = 1.1 % x 0.6 l/hr = 0.0066 l/hr

The calculated GSV of less than 0.07 l/hr for methane and carbon dioxide places the site into Characteristic Situation 1. BS 8485:2015+A1:2019 states that for Characteristic Situation 1 the methane concentration would typically be less than 1% and carbon dioxide less than 5% and that if concentrations are above these limits then consideration should be given to placing the site into Characteristic Situation 2. As the concentrations of methane and carbon dioxide were both within these typical limits it is considered that the Characteristic Situation 1 classification is appropriate for the site. Therefore, gas protection measures are not deemed necessary for the proposed development.

6.5 Revised Conceptual Site Model

A revised Conceptual Site Model is presented as **Table 4** below.

6.6 Waste Classification & Waste Acceptance

Waste classification has been undertaken following guidance set out in WM3 EA Technical Guidance 'Guidance on the classification and assessment of waste', 1st Edition, Version 1.2GB, October 2021. The results of this assessment determine the appropriate List of Waste (LoW) Code and whether the waste should be classified as hazardous or non-hazardous. Classification is undertaken using the results of solid (total) analyses and not on the results of the WAC analyses.

Once the waste has been classified as either hazardous or non-hazardous then the WAC testing determines if the waste meets the requirements for disposal in the required landfill. Therefore, If the waste is classified as hazardous

waste, then the waste would also need to meet the hazardous waste WAC requirements to be disposed of in a hazardous waste landfill. However, if the final destination of the waste is not to landfill then WAC analysis is not required.

The WAC testing also allows for a distinction to be made between inert and non-hazardous waste. Waste that does not fall within the hazardous waste category and meets the requirements for disposal in an inert landfill can therefore be disposed of in an inert landfill. However, waste that does not meet the requirements for inert landfill will need to be disposed of in a non-hazardous landfill. In certain circumstances hazardous waste can be disposed of in a designated cell within a non-hazardous landfill. In this case the waste would need to meet more stringent leachate requirements for stable non-reactive hazardous waste.

6.6.1 Waste Classification

The results of the assessment indicated that contaminant concentrations within the Made Ground, topsoil and natural soils were generally low and would classify the soils as non-hazardous with LoW Code 17 05 04 (soils and stones other than those mentioned in 17 05 03).

рΗ

With respect to Ph there is no limit for inert waste but for non-hazardous waste pH >6.

TOC

The assessment has included determination of the fraction of organic carbon (foc) which can be converted to TOC by multiplying the result by 100. A TOC limit of 3% is placed on waste destined for disposal in an inert landfill. None of the soil samples displayed values exceeding the TOC limit.

<u>Asbestos</u>

Asbestos was not detected.

Metals

A full assessment of metal concentrations has not been undertaken however the results of the chemical analysis indicate that the Made Ground would be classified as non-hazardous waste.

PAHs/Hydrocarbons

The concentration of hydrocarbons in all were less than the hazardous waste threshold of 0.1%.

Bitumen / Coal Tars

The results indicated that the concentrations of PAHs were generally low (total PAH concentration of 1,000mg/kg) and the concentration of benzo(a)pyrene of < 0.05mg/kg was well below the 50mg/kg limit defined in WM3. Therefore, the bituminous surfacing represented by these samples (WS05 and WS06) would be classified as non hazardous waste and assigned the List of Wastes code 17 03 02 for bituminous mixtures other than those mentioned in 17 03 01.

6.6.2 Waste Acceptance

Waste Acceptance Criteria (WAC) analysis was undertaken on three samples of Made Ground. Within the samples from WS01 at 0.70m bgl and WS08 at 0.60m bgl, the concentration of total sulphate (1500mg/kg and2100mg/kg respectively) exceeded the 1000mg/kg threshold for acceptance as Inert Waste. Consequently, the material represented by these samples would likely be classified as non-hazardous waste. The samples from WS04 at 1.70m would potentially be classified as suitable for disposal at an Inert Waste Landfill.

The final disposal classification should however be confirmed by the receiving site operator

6.7 Health & Safety Considerations

To ensure direct exposure of construction workers involved in the site redevelopment to any impacted contaminated shallow soils is minimised, the guidance stated in HSG 66 "Protection of Workers and the General Public During Redevelopment of Contaminated Land" should be followed.

Potential Source Areas	Potential Contaminant of Concern	Pathways	Potential Receptor	Exposure Route (Human unless otherwise stated)	Potential Identified Linkage (unmitigated)	Findings of Ground investigation	Risk (Unmitigat ed)	Proposed Remediation (Mitigation) Measures	Residual Risk Estimation
On-site Sources Water Works		Disturbance due to		Direct Soil Ingestion	Yes	No exceedance of GAC.	Very low	Hardstanding to cover retail site minimising direct contact.	Negligible
Covered reservoir		construction plant causing direct		Indoor Dust ingestion	Yes	As above	As above	As above	Negligible
tank	Asbestos / Metals As,	contact, dusts, vapours.	Occupants of the	Skin Contact with Soils	Yes	As above	As above	As above	Negligible
Garage Depot	Be, Cd, Cu, Cr (VI), Cr (III) Hg, Ni, Se, Va, Zn,	Direct Contact with	development / building fabric	Skin Contact with Dust	Yes	As above	As above	As above	Negligible
	Boron, TPH /PAH	occupants of the		Inhalation of Outdoor Dust	Yes	As above	As above	As above	Negligible
Operational B&M store and car parking	/ BTEX/ MTBE / VOCs/sVOCs	proposed development		Inhalation of Outdoor Vapours	Yes	As above	As above	As above	Negligible
		Inhalation of fibres / vapours / gases by occupants of	Adjacent residents during	Inhalation of Indoor Vapours	Yes	As above	As above	As above	Negligible
Off-site Sources		proposed development	construction	Inhalation of ground gas	Yes	CS1	Low	As above	Negligible
Petrol filling station		·	Secondary	Inhalation of radon gas	Yes	Higher probability radon area	High	Full radon protective measures are necessary.	Negligible
		Permeation of water supply pipework	(undifferentiat ed) Aquifer & secondary (B)	Ingestion via permeated water supply pipework	Yes	No exceedance of GAC.	Very Low	Hardstanding to prevent precipitation, infiltration and leaching.	Negligible
			aquifer	Direct contact with Secondary (undifferentiated) Aquifer in Superficial Deposits	Yes	As above	As above	As above	Negligible
		Leachate		In-direct contact with Secondary (B) Aquifer in bedrock	Yes	As above	As above	As above	Negligible

Table 4: Refined Conceptual Site Model

Direct contact with subsurface soil and/or groundwater during redevelopment works are not assessed as part of the CSM. It is considered that risks to workers will be managed as part of any the redevelopment works at the site through the application of health and safety procedures, where required.

7 GEOTECHNICAL SITE ASSESSMENT

7.1 Geotechnical Considerations

Historical maps within Remada's Phase 1 Desk Study record a ground level of 39.3 m AOD at the southwestern corner of the site, adjacent to the Aberystwyth Road and a ground level of 46.6m AOD at the southeastern corner of the site. At this time, the eastern part of the site was occupied by a garage, but the western part was vacant. A depot was subsequently constructed in the western part of the site. EDI's topographical survey reference 20203/T&S/01-01 records an existing finished road level at the south-eastern corner of the site of 39.3 m AOD and level of 45.77 m AOD just to east of the site, but existing car park levels of 42.9 m AOD in the east and 41.26 in the west. Consequently, the eastern part of the site has been reduced in level by up to 4m and the western part raised by approximately 2m.

Remada's boreholes record Made Ground to a depth 0.75m in the eastern part of the site and to a maximum depth of 3.2m in the western part. Made Ground in the described as slightly clayey gravel of mudstone and concrete indicative of a construction layer beneath the existing car park. Made Ground in the western part consists of similar clayey gravel overlying cohesive soil to to a maximum depth of 2m overlying granular Made Ground at 39.6 mAOD which is consistent with historical ground level at the time of the depot.

In order for pad foundations for the proposed store to bear on natural soils, the formation level would be approximately 3.2m bgl in the western part of the site. In order for to construct shallow foundations it would be necessary to improve the ground.

Details of the proposed permanent and variable design loads (actions) are not currently known although an indicative column load of 400kN has been provided.

7.2 Foundations

The existing Made Ground and fill material is variable in terms of SPT N values and the advice of a specialist ground improvement contractor should be obtained with regard to achieving a suitable minimum bearing capacity for the proposed development.

Alternatively, following demolition and site clearance it may be possible to excavate and recompact the existing Made Ground fill to a minimum specified bearing capacity.

7.3 Shrinkage and Swelling

All samples of CLAY were reported as being HIGH plasticity with between 85% and 100% passing a 0.425mm sieve. The modified plasticity index equates at High Volume Change Potential.

BRE 412 states that where the natural moisture content is less than 0.4 times the Liquid Limit (w < 0.4 wL) it is indicative of desiccation. None of the samples show evidence of this occurring.

The minimum foundation depths outside the zone of tree influence as specified by the NHBC have been reproduced in **Table 5** below;

Volume Change Potential	A) Minimum foundation depth (m) (allowing for restricted new planting)	B) Minimum foundation depth (m) (where planting is outside the zone of influence of trees)
High	1.50	1.0
Medium	1.25	0.9
Low	0.9	0.75

Table 5: NHBC 2025 Minimum Foundation Depths

7.4 Floor Slab

If the existing Made Ground is not recompacted to a suitable bearing capacity for either a raft or ground bearing floor slab, it will be necessary to suspend the floor slab on piled foundations.

7.5 Imported Fill

All imported fill material should comply with an earthworks specification to be prepared by the engineer and not contain concentrations of contaminants at greater than the Generic Assessment Criteria (GAC) presented in **Table 3.**

7.6 Excavations and Temporary Works

Side slopes within the Made Ground are unlikely to remain stable even in the short term without support or without being battered back to a safe slope gradient. A detailed inspection of the side slopes should be made during excavation and a risk assessment carried out to fully assess the support measures required.

Groundwater seepages were noted in the window samples at depths of 1.65m, 3.8m and 3.9m with resting groundwater within the monitoring wells standing at depths of between 1.32 and 2.95m bgl.

7.7 External Car Park Construction

CBR values estimated from the DCP tests indicated that near surface, the CBR values recorded were between 11.5 and >100%. Poorly compacted Made Ground backfill resulting from the demolition works should be excavated, processed as necessary to produce a 6F2 material and replaced in compacted layers in accordance with an engineering specification.

7.8 Protection of Buried Concrete

In accordance with BRE SD1 for buried concrete in a brownfield site with mobile groundwater, analyse of selected samples for water soluble sulphate returned values of up to 1460 mg/l and pH >7.6. A total potential sulphate value of 0.104% was also calculated from the total sulphur results. Therefore, a Design Sulphate Class DS-2 is considered appropriate for buried concrete and an ACEC Class of AC-1s is considered appropriate for the location.

7.9 General Construction Advice

Topsoil should be stripped from proposed zones of construction.

All formations should be cleaned, and subsequently inspected, by a suitably qualified engineer prior to placing concrete. Should any soft, compressible or otherwise unsuitable materials be encountered they should be removed and replaced by blinding concrete.

Foundation concrete, or alternatively, a blinding layer of concrete, should be placed immediately after excavation and inspection in order to protect the formation against softening and disturbance.

Generally, all formations should be placed wholly within the same material type, unless specific geotechnical inspection and assessment have been undertaken.

Where applicable ground beneath the proposed building footprint and potentially car parking may require to be stripped to reveal localised areas of Made Ground and structures. Excavations should be backfilled with suitably recompacted materials to achieve formation level.

During foundation excavation works arisings should be constantly monitored for the presence of contamination.

8 CONCLUSIONS & RECOMMENDATIONS

8.1 Conclusions

The following conclusions have been made based on the findings of this investigation.

8.1.1 Phase 2 Site Investigation

The earliest available historical map dated 1888 records a small building and a water works within the site boundary. By 1965 a garage was constructed in the eastern zone of site and by 1980 a depot was constructed in the western zone. It is understood that the existing retail unit was constructed in 2007 as a Focus DIY and subsequently became occupied as B&M store in 2016.

Made Ground was encountered in all the exploratory holes from surface level to a maximum depth of 3.2m.

Natural deposits were encountered within boreholes WS01-WS03 and WS06-WS09. The material was generally described as a stiff, slightly sandy to sandy slightly gravelly to gravelly locally silty CLAY or a sandy clayey GRAVEL. Gravel was recorded as mudstone, sandstone and quartzite. Natural deposits were encountered to the base of all exploratory holes where encountered to a maximum depth of 7.0m.

8.1.2 Human Health Risk Assessment

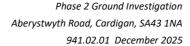
The results of soil chemical analysis were compared to Human Health Generic Assessment Criteria for commercial land use. None of the analytes tested were detected at concentrations that exceeded the human health GAC protective of on-site workers.

8.1.3 Water Resources Risk Assessment

The results of the soil chemical analysis undertaken has identified that concentrations of metals and inorganic contaminants are within the range of typical Made Ground. Detectable concentrations of TPH and PAHs were encountered in some samples. However, the contaminants identified are of low solubility and mobility and as such are unlikely to present a risk to groundwater beneath the site. In addition, it should be noted that the site will be predominantly covered with the building and areas of hardstanding. Therefore, the risk of leaching of contaminants as a result of infiltration of groundwater is likely to be limited. Therefore, the risk to groundwater from contaminants within the Made Ground at the site is considered to be low and does not warrant further consideration.

8.1.4 Waste Classification and Acceptance

In general, the results of the chemical analysis indicates that the material would be classified as non hazardous waste.


Waste Acceptance Criteria (WAC) analysis was undertaken on three samples of Made Ground. Within the samples from WS01 at 0.70m bgl and WS08 at 0.60m bgl, the concentration of total sulphate (1500mg/kg and 2100mg/kg respectfully) exceeded the 1000mg/kg threshold for acceptance as Inert Waste. Consequently, the material represented by these samples would likely be classified as non-hazardous waste. The samples from WS04 at 1.70m would potentially be classified as suitable for disposal at an Inert Waste Landfill.

Two samples of bituminous surfacing were analysed for concentrations of PAH compounds. The results indicated that the concentrations of PAHs were generally low (total PAH concentration of 1,000mg/kg) and the concentration of benzo(a)pyrene of < 0.05mg/kg was well below the 50mg/kg limit defined in WM3. Therefore, the bituminous surfacing represented by these samples (WS05 and WS06) would be classified as non hazardous waste and assigned the List of Wastes code 17 03 02 for bituminous mixtures other than those mentioned in 17 03 01.

8.2 Recommendations

In order for pad foundations for the proposed store to bear on natural soils, the formation level would be approximately 3.2m bgl in the western part of the site. In order for to construct shallow foundations it would be necessary to improve the ground.

The existing Made Ground and fill material is variable in terms of SPT N values and the advice of a specialist ground improvement contractor should be obtained with regard to achieving a suitable minimum bearing capacity for the proposed development. Alternatively, following demolition and site clearance it may be possible to excavate and

recompact the existing Made Ground to a minimum specified bearing capacity. If the existing Made Ground is not recompacted to a suitable bearing capacity for either a raft or ground bearing floor slab, it will be necessary to suspend the floor slab on piled foundations.

CBR values estimated from the DCP tests indicated that near surface, the CBR values recorded were >80%. Poorly compacted Made Ground backfill resulting from the demolition works should be excavated, processed as necessary to produce a 6F2 material and replaced in compacted layers in

A Design Sulphate Class DS-2 is considered appropriate for buried concrete and an ACEC Class of AC-1s is considered appropriate for the location.

8.3 Ground Gas

The results of four rounds of gas monitoring visits placed the site into Characteristic Situation 1 and therefore ground gas protection measures for methane and carbon dioxide will not be required within the proposed buildings.

The site is in a higher radon probability area and as such full Radon protection measures will be required.

REFERENCES & GUIDANCE

AGS, Guidance on the Waste Classification for Soils – A Practitioners' Guide 2019.

Barnes, G. 2010, Soil Mechanics Principles and Practice. 3rd Edition.

BRE, Special Digest 1:2005 (3rd Edition), Concrete in Aggressive Ground. 2005.

BR 211, Guidance on protective measures for new buildings (including supplementary advice for extensions, conversions and refurbishment projects), 2023.

BRE Digest 365 Soakaway Design, 2003.

BRE Diaest 412 Desiccation in Clay Soils 1996

BRE465 Cover Systems for Land Regeneration 2004.

BS 10175:2011+A1:2013, Investigation of potentially contaminated sites: Code of practice.

BS 1377-2:2022. Methods of test for soils for civil engineering purposes.

BS 5930:2015+A1:2020, Code of practice for site investigations.

BS 8485:2015+A1 2019, Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings.

BS 8576:2013, Guidance on investigations for ground gas – Permanent gases and Volatile Organic Compounds (VOCs).

BS EN ISO 17892 Geotechnical Investigation & Testing, Laboratory Testing of Soil.

BS EN ISO 22476-3:2005, Geotechnical investigation and testing: Field testing - Standard penetration test.

CIRIA, C504, Engineering in glacial tills, 1999.

CIRIA 574 Engineering in Chalk, 2002

CIRIA, C665, Assessing risks posed by hazardous ground gases to buildings, 2007.

CIRIA, C682, The VOCs Handbook: Investigating, assessing and managing risks from inhalation of VOCs at land affected by contamination, 2009.

CIRIA, C716, Remediating and mitigating risks from volatile organic compound (VOC) vapours from land affected by contamination, 2012.

CIRIA C733, Asbestos in Soil and Made Ground: A Guide to Understanding & Managing Risks.

CL:AIRE/EIC/AGS, The Soil Generic Assessment Criteria for Human Health Risk Assessment, 2009.

CL:AIRE, SP1010, Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination -Final Project Report. 2013.

CL:AIRE, The Definition of Waste: Development Industry Code of Practice Version 2

DEFRA, Circular 01/2006, Contaminated Land Environmental Protection Act 1990, Part 2A. 2006.

DEFRA, SP1010, Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document. March 2014.

Environment Agency, Verification of Remediation of Land Contamination Science Report - NC/00/38/SR

Environment Agency, Waste Classification, Guidance on the classification and assessment of waste (1st Edition V1.2GB) Technical Guidance WM3. October 2021.

EN 1997-1: 2004 & EN 1997-2 Geotechnical Design Part 1 - General Rules, Part 2 - Ground Investigation & Testing

Health & Safety Executive, HSG 66, Protection of Workers and the General Public During Redevelopment of Contaminated Land. 1991.

Highways Agency, IAN 73/06 Rev 1, Design of Pavement Foundations, 2009.

Land Contamination Risk Management www.gov.uk 08.10.2020.

 $LCM/CIEH, The\ LQM/CIEH\ S4ULs\ for\ Human\ Health\ Risk\ Assessment.\ Land\ Quality\ Press,\ S4UL3146,\ 2015.$

NHBC Standards, 2025,

Tomlinson, M.J., 2001, Foundation Design and Construction, 7th Edition.

The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015

The Definition of Waste: Development Industry Code of Practice, CL:AIRE 2011.

UKWIR, Guidance for the Selection of Water Supply Pipes to be Used in Brownfield Sites. 2011

STUDY LIMITATIONS

IMPORTANT. This section should be read before reliance is placed on any of the information, opinions, advice, recommendations or conclusions contained in this report.

- 1. This report has been prepared by Remada, Ltd with all reasonable skill, care and diligence within the terms of the Appointment and with the resources and manpower agreed with (the 'Client'). Remada does not accept responsibility for any matters outside the agreed scope.
- 2. This report has been prepared for the sole benefit of the Client unless agreed otherwise in writing.
- 3. Unless stated otherwise, no consultations with authorities or funders or other interested third parties have been carried out. Remada is unable to give categorical assurance that the findings will be accepted by these third parties as such bodies may have published, more stringent objectives. Further work may be required by these parties.
- 4. All work carried out in preparing this report has used, and is based on, Remada' professional knowledge and understanding of current relevant legislation. Changes in legislation or regulatory guidance may cause the opinion or advice contained in this report to become inappropriate or incorrect. In giving opinions and advice pending changes in legislation, of which Remada is aware, have been considered. Following delivery of the report Remada has no obligation to advise the Client or any other party of such changes or their repercussions.
- 5. This report is only valid when used in its entirety. Any information or advice included in the report should not be relied upon until considered in the context of the whole report.
- 6. Whilst this report and the opinions made are to the best of Remada' belief, Remada cannot guarantee the accuracy or completeness of any information provided by third parties.
- 7. This report has been prepared based on the information reasonably available during the project programme. All information relevant to the scope may not have received.

- 8. This report refers, within the limitations stated, to the condition of the site at the time of the inspections. No warranty is given as to the possibility of changes in the condition of the site since the time of the investigation.
- 9. The content of this report represents the professional opinion of experienced environmental consultants. Remada does not provide specialist legal or other professional advice. The advice of other professionals may be required.
- 10. Where intrusive investigation techniques have been employed they have been designed to provide a reasonable level of assurance on the conditions. Given the discrete nature of sampling, no investigation technique is capable of identifying all conditions present in all areas. In some cases the investigation is further limited by site operations, underground obstructions and above ground structures. Unless otherwise stated, areas beyond the boundary of the site have not been investigated.
- 11. If below ground intrusive investigations have been conducted as part of the scope, service tracing for safe location of exploratory holes has been carried out. The location of underground services shown on any drawing in this report has been determined by visual observations and electromagnetic techniques. No guarantee can be given that all services have been identified. Additional services, structures or other below ground obstructions, not indicated on the drawing, may be present on site
- 12. Unless otherwise stated the report provides no comment on the nature of building materials, operational integrity of the facility or on any regulatory compliance issues.
- 13. Unless otherwise stated, samples from the site (soil, groundwater, building fabric or other samples) have NOT been analysed or assessed for waste classification purposes.

TABLES (not presented within text).

																						R	ENADA GEO CONSULTANTS
SITE		Cardigan																					GEO F CONSULIANTS
PROJECT N	0.	941.02												Atmosphe	ric & Gro	und Condition	ıs						
Visit 1 of 4								Atm	ospheric	Pressur	e Variation	s During	Visit							Ground Surf	ace Condit	ions	
Carried Out	by:	Megan Bell									988										Net		_
Date:		31.10.25									300												
Instrument								Atmos	pheric Pr	essure .	Trend Over	Previou	ıs 48hrs							Weather	Conditions	;	
Details		GFM436 14	1048							Fa	alling									Raining	and damp		
	Cover Height	Well Diameter	CH4	(%v/v)	CH ₄ Steady	CO ₂	(%v/v)	O ₂ (%v	'v)	H23	S (ppm)	CO	(ppm)	Duration	Flow	Relative	PID	(ppm)	Atmospheric	Water Level	Water Level	Depth of	
Well No.	(m AOD)	(mm)	Peak	Steady	LEL (%)	Peak	Steady	Minimum	Steady	Peak	Steady	Peak	Steady			Pressure (mb)	Peak	Steady	Pressure (mb)	(m bgl)	(m AoD)	Pipe (m bgl)	Comments
WS01	41.120	50	0.0	0.0	0.0	1.1	0.2	19.6	19.6	0.0	0.0	0.0	0.0	60	0.0		NR	NR	987	2.910	38.210	2.920	
WS02	41.120	50	1.5	0.0	0.0	0.0	0.0	19.2	19.2	0.0	0.0	0.0	0.0	60	0.0		NR	NR	988	1.320	39.800	1.930	Water covering flush cover and bung

NR = Not Recorded

^ For measurement of gas concentrations

> = Above LEL WST = Water Sample Taken

GL = Ground Level

					GAS 8	& GRC	OUNDW	ATER MON	IITORIN	NG DA	TA											R	EMADA GEO T CONSULTANTS
SITE		Cardigan																					GEO , CONSOCIANTS
PROJECT No	١.	941.02												Atmosphe	ric & Gro	und Condition	s						
Visit 2 of 4								Atm	ospheric	Pressur	e Variation	s During	Visit							Ground Surf	ace Condit	ions	
Carried Out I	•	Megan Bell									996									1	Net		
Date:		07.11.25																					
Instrument Details		GFM436 14	1048					Atmos	pheric Pr		Frend Over ising	Previou	s 48hrs								and damp	3	
	Cover Height	Well Diameter	CH4	(%v/v)	CH, Steady	CO ₂	(%v/v)	O ₂ (%v	'v)	H23	S (ppm)	CO	(ppm)	Duration	Flow	Relative	PID	(ppm)	Atmospheric	Water Level	Water Level	Depth of	
Well No.	(m AOD)	(mm)	Peak	Steady	LEL (%)	Peak	Steady	Minimum	Steady	Peak	Steady	Peak	Steady	(secs)^	Rate (l/hr)		Peak	Steady	Pressure (mb)	(m bgl)	(m AoD)	Pipe (m bgl)	Comments
WS01 41.120 50 0.0 0.0			0.0	0.0	0.9	0.9	19.4	19.5	0.0	0.0	0.0	0.0	60	0.0		NR	NR	996	2.950	38.170	2.950		
WS02	41.120	50	0.0	0.0	0.0	0.0	0.0	19.7	19.8	0.0	0.0	0.0	0.0	60	0.0		NR	NR	996	2.010	39.110	2.010	

NR = Not Recorded

^ For measurement of gas concentrations

> = Above LEL WST = Water Sample Taken

GL = Ground Level

					GAS	& GRC	OUNDW	ATER MON	IITORIN	NG DA	TA											R	EMADA
SITE		Cardigan																					GEO F CONSULTANTS
PROJECT No	١.	941.02												Atmosphe	ric & Gro	und Condition	ıs						
Visit 2 of 4								Atm	ospheric	Pressur	e Variation	s During	Visit							Ground Surf	ace Condit	ions	
Carried Out I	by:	Vince William	ns							99	94mb									1	Net		
Date:		12-Nov-25																					
Instrument Details	Model №=	rial №=G	508646				Atmos	pheric Pr		Frend Over alling	Previou	is 48hrs								Conditions aining	š		
	0 U. laba		CH4	(%v/v)	CH, Steady	CO ₂	(%v/v)	O ₂ (%v	lv)	H2	S (ppm)	co	(ppm)	Duration	Flow	Relative	PID	(ppm)	Atmospheric	Water Level	Water Level	Depth of	
Well No.	ell No. Cover Height (m AOD) Well Diamete (mm)		Peak	Steady	LEL (%)	Peak	Steady	Minimum	Steady	Peak	Steady	Peak	Steady	(secs)^	Rate (l/hr)		Peak	Steady	Pressure (mb)	(m bgl)	(m AoD)	Pipe (m bgl)	Comments
WS01	41.120	50	0.3	0.3	0.3	0.5	0.5	20.1	20.1	0.0	0.0	0.0	0.0	60	-0.1		NR	NR	994	2.920	38.200	2.930	BAL=79.1
WS02	41.120	50	0.3	0.3	0.1	0.2	0.1	21.6	21.4	0.0	0.0	0.0	0.0	60	-0.2		NR	NR	994	2.020	39.100	2.080	BAL=78.0
																							Levels taken @ T.O.C.

Notes: NR = Not Recorded

^ For measurement of gas concentrations

> = Above LEL WST = Water Sample Taken

GL = Ground Level

		r Height Well Diameter CH4, (%v/v) CH4, Steady CO2, (%v/v) O2, (%v/v) H25 (spm) CO (spm) Duration Flow (mm) Peak Steady LEE, (19) Peak Steady Minimum Steady Peak Steady Peak Steady Peak (6xc.2)* Rate (thr)																				R	EMADA
SITE		Cardigan																					GEO F CONSULTANTS
PROJECT No	o.	941.02																					
Visit 3 of 4								Atm	ospheric	Pressur	e Variation	ns Durin	g Visit							Ground Sur	face Condit	ions	
Carried Out Date:	•		ns							10	23mb										Wet		
Instrument								Atmos	spheric P	ressure	Trend Over	r Previou	ıs 48hrs							Weather	Conditions	3	
Details			508646						R	ising									Ov	ercast			
	Cover Height	Well Diameter	CH4	(%v/v)	CH, Steady	CO ₂	(%v/v)	O ₂ (%v	/v)	H2	S (ppm)	co	(ppm)	Duration	Flow	Relative	PIE	(ppm)	Atmospheric	Water Level	Water Level	Depth of	
Well No.	Well No. Cover Height (m AOD)		Peak	Steady			Steady	Minimum	Steady	Peak	Steady	Peak	Steady				Peak	Steady	Pressure (mb)	(m bgl)	(m AoD)	Pipe (m bgl)	Comments
WS01	41.120	50	0.3	0.3	0.3	1.0	1.0	20.6	20.6	0.0	0.0	0.0	0.0	60	0.4	0.04	NR	NR	1023	2.930	38.190	3.000	Bal=78.2/Cover and bento. sunk
WS02	41.120	50	0.2	0.2	0.2	1.1	1.1	20.2	20.2	0.0	0.0	51.0	40.0	60	0.6	-0.05	NR	NR	1023	2.000	39.120	2.080	Bal=78.4/Over swelling of Bento.in BH,Bung/tap
																							Levels taken @ T.O.C.

		I ah Cam	ple Number:		700000	700000	700000	700004	700000	700000	
			Reference:		732028 WS01	732029 WS02	732030 WS03	732031 WS04	732032 WS08	732033 WS05	732034 WS06
			Depth (m):		0.7	0.7	0.5	1.7	0.6	0.07	0.07
			l Depth (m):	Commercial GAC	None	None	None	None	None	None	None
		Dasa	ii Deptii (iii).	1.0% SOM	Supplied	Supplied	Supplied	Supplied	Supplied	Supplied	Supplied
		Strata/M	laterial Type		MADE	MADE	MADE	MADE	MADE	Asphalt	Asphalt
		Da	te Sampled:		GROUND 24/10/2025	GROUND 24/10/2025	GROUND 23/10/2025	GROUND 23/10/2025	GROUND 23/10/2025	24/10/2025	24/10/2025
Determinand	Units	Limit of detectio	Accreditatio n Status	[mg/kg unless stated]	24/10/2023	24/10/2023	20/10/2020	20/10/2020	20/10/2020	24/10/2023	24/10/2023
Stones	%	0.01	NONE		43.60	56.60	89.60	16.80	56.40	< 0.1	< 0.1
Moisture	%	0.01	NONE		3.1	1	1.9	13	3.9	0.2	0.42
Asbestos in Soil	Type	N/A	ISO 17025		Not-detected	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos % by hand picking/weighing	%				-	-	-	-	-	-	-
Asbestos Containing Material Types Detected (ACM					-	-	-	-	-	-	-
рН	pH Units	N/A	MCERTS		8.9	8.4	8.4	9.2	7.9	-	-
Arsenic	mg/kg	1.00	MCERTS	640	5.1	3.9	< 1.0	17	3.4	-	-
Beryllium	mg/kg	0.06	MCERTS	12	0.17	0.11	0.23	0.7	0.42	-	-
Boron	mg/kg	0.20	MCERTS	240000	0.4	0.5	0.4	1	0.6	-	-
Cadmium	mg/kg	0.20	MCERTS	190	0.2	< 0.2	0.5	0.2	0.4	-	-
Chromium (Hexavalent) Chromium (Trivalent)	mg/kg mg/kg	1.80	MCERTS NONE	33 8600	< 1.8 6.5	< 1.8 6.4	< 1.8 5	< 1.8 29	< 1.8 6.9	-	-
Chromium (aqua regia extractable)	mg/kg	1.00	MCERTS	-	6.5	6.4	5	29	6.9	-	-
Copper	mg/kg	1.00	MCERTS	68000	9.4	17	5.1	44	9.6	-	-
Lead	mg/kg	1.00	MCERTS	2330	3.1	4.1	1.5	88	3.5	-	-
Mercury	mg/kg	0.30	MCERTS	58 ^{vap} (25.8)	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	-	-
Nickel Selenium	mg/kg mg/kg	1.00	MCERTS MCERTS	980 12000	4.7 < 1.0	3.5 < 1.0	3.1 < 1.0	22 < 1.0	6.9 < 1.0	-	-
Vanadium	mg/kg	1.00	MCERTS	9000	6	5.4	3.7	37	5.5	-	-
Zinc	mg/kg	1.00	MCERTS	730000	9.1	15	8.2	120	8.3	-	-
Total Cyanide	mg/kg	1.00	MCERTS		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	-
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS		0.001	0.001	0.001	0.013	0.001	-	-
Calculated TOC from FOC Calculated SOM from FOC	-	-	-		0.10 0.17	0.10 0.17	0.10 0.17	1.30 2.24	0.10 0.17	-	-
Aliphatic TPH >C5-C6	mg/kg	0.01	NONE	3200 ^{sol} (304)	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010		-
Aliphatic TPH >C6-C8	mg/kg	0.01	NONE	7800 ^{sol} (144)	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	-	-
Aliphatic TPH >C8-C10	mg/kg	0.01	NONE	2000 ^{sol} (78)	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	-	-
Aliphatic TPH >C10-C12	mg/kg	1.00	MCERTS	9700 ^{sol} (48)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	-
Aliphatic TPH >C12-C16	mg/kg	2.00	MCERTS	59000 ^{sol} (24)	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	-	-
Aliphatic TPH >C16-C21	mg/kg	8.00	MCERTS	1600000	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	-	-
Aliphatic TPH >C21-C35	mg/kg	8.00	MCERTS		40	< 8.0	14	< 8.0	< 8.0	-	-
Total Aliphatic Hydrocarbons: Aromatic TPH >C5-C7	mg/kg	10.00 0.01	NONE NONE	2000089 (4220)	40 < 0.010	< 10 < 0.010	14 < 0.010	< 10 < 0.010	< 10 < 0.010	-	-
Aromatic TPH >C5-C7 Aromatic TPH >C7-C8	mg/kg mg/kg	0.01	NONE	26000 ^{sol} (1220) 56000 ^{vap} (869)	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	-	-
Aromatic TPH >C8-C10	mg/kg	0.02	NONE	3500 ^{vap} (613)	< 0.010	< 0.010	< 0.020	< 0.020	< 0.010	-	-
Aromatic TPH >C10-C12	mg/kg	1.00	MCERTS	16000 ^{sol} (364)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	_	-
Aromatic TPH >C12-C16	mg/kg	2.00	MCERTS	36000° (169)	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	-	-
Aromatic TPH >C16-C21	mg/kg	10.00	MCERTS	28000	< 10	< 10	< 10	< 10	< 10	-	-
Aromatic TPH >C21-C35	mg/kg	10.00	MCERTS	28000	13	< 10	< 10	24	< 10	-	-
Total Aromatic Hydrocarbons	mg/kg	10.00	NONE		13	< 10	< 10	24	< 10	-	-
Calculated Sum TPH (sum Aliphatic + sum Aromatic)	1 '				53	< 20	< 24	34	< 20	-	-
Naphthalene	mg/kg	0.05	MCERTS	190 ^{sol} (76.4)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	83000 ^{sol} (86.1)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	84000 ^{sol} (57)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	63000 ^{sol} (30.9)	< 0.05	< 0.05	< 0.05	0.07	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	22000	< 0.05	< 0.05	< 0.05	1.1	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS MCERTS	520000	< 0.05	< 0.05	< 0.05	0.43	< 0.05	< 0.05	< 0.05 < 0.05
Fluoranthene Pyrene	mg/kg mg/kg	0.05	MCERTS	23000 54000	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	2.2 1.7	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05
Benzo[a]anthracene	mg/kg	0.05	MCERTS	170	< 0.05	< 0.05	< 0.05	1.7	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	350	< 0.05	< 0.05	< 0.05	1.1	< 0.05	< 0.05	< 0.05
Benzo[b]fluoranthene	mg/kg	0.05	ISO 17025	44	< 0.05	< 0.05	< 0.05	1.2	< 0.05	< 0.05	< 0.05
Benzo[k]fluoranthene	mg/kg	0.05	ISO 17025	1200	< 0.05	< 0.05	< 0.05	0.52	< 0.05	< 0.05	< 0.05
Benzo[a]pyrene Indeno(1,2,3-c,d)Pyrene	mg/kg mg/kg	0.05	MCERTS MCERTS	35 500	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	0.95 0.42	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Dibenz(a,h)Anthracene	mg/kg	0.05	MCERTS	3.5	< 0.05	< 0.05	< 0.05	0.42	< 0.05	< 0.05	< 0.05
Benzo[g,h,i]perylene	mg/kg	0.05	MCERTS	3900	< 0.05	< 0.05	< 0.05	0.45	< 0.05	0.08	0.080
Coronene	mg/kg	0.05	NONE		< 0.05	-		0.12	< 0.05	< 0.05	< 0.05
Total Of 16 PAH's Total Of 17 PAH's	mg/kg	0.8	ISO 17025 ISO 17025		< 0.80 < 0.85	< 0.80	< 0.80	11.4 11.5	< 0.80		< 0.85
MTBE (Methyl Tertiary Butyl Ether)	mg/kg µg/kg	0.85 5.00	MCERTS	7900000	< 0.85 < 5.0	< 5.0	< 5.0	11.5 < 5.0	< 0.85 < 5.0	< 0.85	- 0.85
Benzene	μg/kg μg/kg	5.00	MCERTS	27000	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	-	-
Toluene	μg/kg	5.00	MCERTS	56000000 ^{vap} (869000)	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	-	-
Ethylbenzene	μg/kg	5.00	MCERTS	5700000 ^{vap} (518000)	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	-	-
p & m-Xylene	μg/kg	8.00	MCERTS	5900000 ^{sol} (576000)	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	-	-
o-Xylene	μg/kg	5.00	MCERTS	6600000 ^{sol} (478000)	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	-	-
Total Phenols	mg/kg	1.00	MCERTS	440 ^{dir} 26000)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	-

Determinand concentration below the GAC

Determinand concentration in exceedance of GAC

Determinand concentration in exceedance of the vapour/solubility saturation limit.

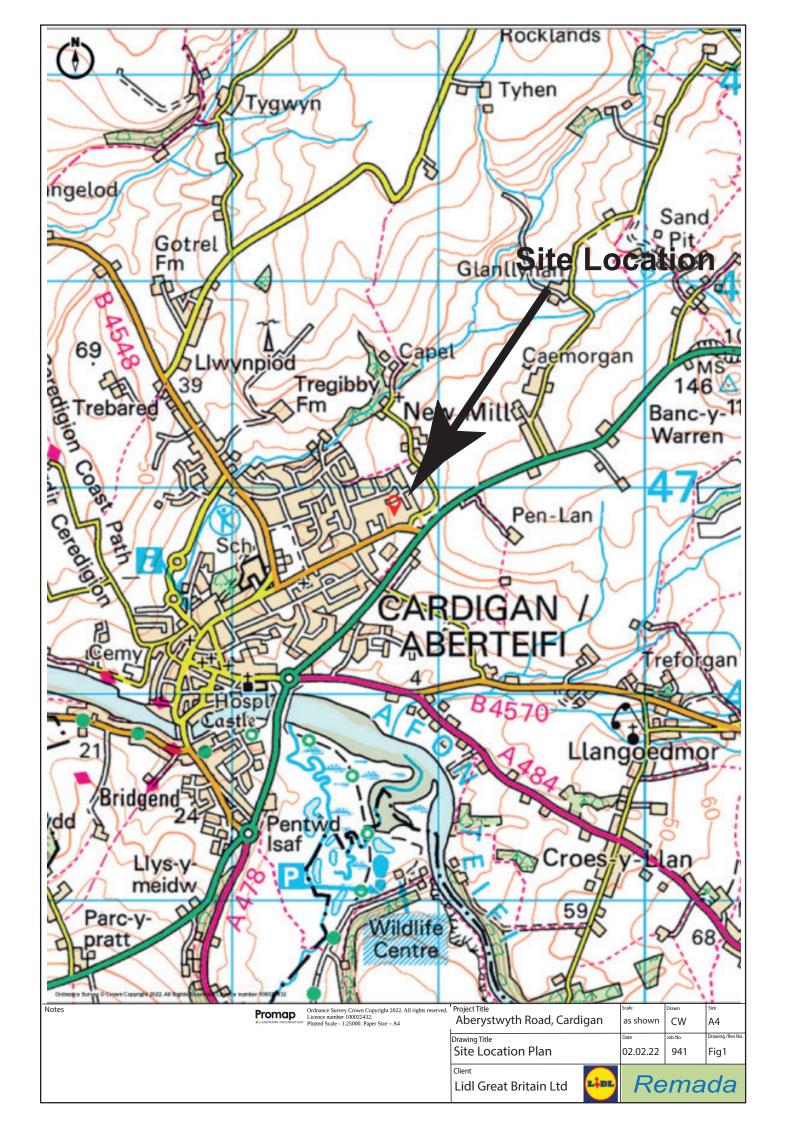
NC: No published criteria, U/S: Unsuitable sample.

NC: No published citeria, U.S. Unsuitable sample.

yer: Screening drief presented exceed the vapour saturation limit, which is presented in brackets.

sol: Screening criteria presented exceed the sububility saturation limit, which is presented in brackets.

dir. Screening criteria based on threshold protective of direct skin contact (publishies in brackets based on health effects following long term exposure provided for illustration only).


(I): For exassersent based on the use of the surrogate marker approach the GAC for Coal Tar must be used instead of benzo(a)pyrene.

*Value presented in mg/kg

FIGURES

EXPLORATORY HOLE LOGS

Key to exploratory hole symbols and abbreviations

SAMPLE TYPES

ACM - Asbestos sample

BLK - Block sample

D - Disturbed sample

G - Gas sample

TW - Pushed thin wall sample

W - Water sample

AMAL - Amalgamated sample

C - Core sample

ES - Environmental sample

J - Jar sample

U - Undisturbed sample

B - Bulk disturbed sample CBR - CBR test sample

EW - Environmental water sample

L - Liner sample

UT - Undisturbed thin wall sample

IN-SITU TESTS

HV - Hand shear vane

PP - Hand penetrometer

HV(r) - Hand shear vane residual

SPT - Standard penetration test

PID - Photo ionisation detector

SPT(C) - SPT using cone

GROUNDWATER

Groundwater strike

Groundwater rest level

ROTARY CORE DETAILS

TCR - Total core recovery (%)

FI - Fracture index

SCR - Solid core recovery (%)

NI - Non-intact core

RQD - Rock quality designation (%) AZCL - Assumed zone of core loss

LEGEND

Topsoil

Clay

Chalk

Sand backfill

Peat

Silt

Breccia

Gravel backfill

Made ground [cohesive]

Sand

Conglomerate

Arisings

Concrete

Gravel

Metamorphic

Bentonite

Wood

Cobbles

Igneous

Concrete

Brick

Boulders

Mudstone

Gypsum

material

Bituminous

Siltstone

Coal

٠	•			•	•	
	•	•			٠	l
٠			٠	٠		
•			. •	٠		

Sandstone

Limestone

Slotted pipe

Plain pipe

Void

WS01 Sheet 1 of 1

Hole Type WLS Easting 218746.00 **Northing** 246855.00 Ground Level (m) Project Name Cardigan Project No. 941.02 Start Date 2025-10-23 End Date 2025-10-23

				Cardigan			941.02 2025-10-23 2025-10-23	
Client Lidl Gr	eat B	ritain Ltd				ultant ada Ltd	Contractor	
			Sar	nples and Tests		Depth	Strata	
Backfill	Wate Leve	Depth (m)	Type/ Ref	Results	(m)	(thickness)	Legend Description	7
////			1101			(0.22)	MADE GROUND: Concrete with rebar.	_
					40.90	0.22	rebar encountered. (0.09m)	E
							gas membrane. (0.21m)	J⊦
		0.70	ES			(0.58)	MADE GROUND: Grey gravelly slightly clayey sand. Gravel is angular to subangular fine to coarse concrete, brick and mudstone.	0.5
		0.70	WAC		40.32	0.80	small sheet of plastic. (0.50m)	_}
		1.00	SPT(C)	N=28 (5,6/5,5,10,8) N60=45		(0.50)	MADE GROUND: Firm greyish brown slightly sandy gravelly clay. Gravel is angular to subangular fine to coarse concrete, asphalt, brick and mudstone.	1.0
					39.82	1.30	MADE GROUND: Dark grey sandy slightly clayey gravel. Gravel is angul to subangular fine to coarse mudstone, slate and concrete.	ar_ 1.5
0 0		1.80	HV	87 (kPa)				-
0 0		2.00	SPT(C)	N=23 (5,5/5,6,5,7) N60=37			h	-2.0
00							becoming very sandy. (2.00 - 2.60m)	
0 0						(1.90)		-
0 0								2.5
0 0								
00							pocket of slate. (2.80 - 3.00m)	-
×××××××××××××××××××××××××××××××××××××××		3.00	SPT(C)	N=15 (6,5/3,4,4,4) N60=24			, , , , , , , , , , , , , , , , , , ,	3.0
>>>					37.92	3.20		_
\ggg							Stiff to verystiff brown slightly sandy slightly gravelly silty CLAY. Gravel is subangular to subrounded fine to coarse mudstone.	-
XXX							, , , , , , , , , , , , , , , , , , ,	-3.5
>>>		3.60	D				<u>% · ⊗ .</u>	
XXX							* <u>~</u> <u>~</u> <u>~</u> . ~ .	-
>>>		4.00	SPT(C)	N=24 (3,4/5,6,6,7) N60=38			X ₀ · Ø . ∞ · _∞ X	4.0
\ggg		4.00-5.00	В				x o s . x . x	
XXX							$\sqrt[\infty]{\frac{\cdot}{\mathbf{z}}} \cdot \sqrt[\infty]{\mathbf{z}}$	-
XXX								-4.5
XXX						(2.80)	▼ ▼ ▼ ▼ .	
>>>		4.80	HV	102 (kPa)			<u>×∞ ×</u> .×	
\ggg		5.00	SPT(C)	N=28 (4,4/7,6,7,8) N60=45			<u>√o</u> · <u>⊗</u> ·	-5.0
XXX		5.00-6.00	В				\overline{\chi} \overline{\chi} \c	F
XXX							ኤ ⋅ଛ.]	
\ggg							<u>x ∞ x</u> → x	-5.5
XXX							×o .× ×o · Ø .	
\ggg							× × × × × × × × × × × × × × × × × × ×	
XXXX		6.00	SPT(C)	N=50 for 290mm	35.12	6.00	End of Borehole at 6.00m	6.0
				(8,8/12,14,13,11 for 65mm) N60=80			End of Bolonolo de 0.00m	F
								-6.5
								F !
								<u> </u>
								7.0
Remar 1) Loc		CAT scan	ned prior	to drilling. 2) No groundwater end	countered	d during	Method, Plant, Stability, Dimensions g drilling. 3) Borehole 0.00 - 6.00m WLS Window Sampler	Logger JH

1) Location CAT scanned prior to drilling. 2) No groundwater encountered during drilling. 3) Borehole installation with monitoring well upon completion.

0.00 - 6.00m WLS Window Sampler

JH

Checked By: Peter Searing Approved By: Peter Searing Status: FINAL

Sheet 1 of 1

Hole Type WLS Easting 218763.00 **Northing** 246844.00 Ground Level (m) 41.20 Project Name Cardigan Project No. 941.02 Start Date 2025-10-23 End Date 2025-10-23

			Cardigan				941.02 2025-10-23 2025-10-23	
ent I Great B	Britain Ltd				ultant ada Ltd		Contractor	
		Samp	oles and Tests		Depth		Strata	Т
Wate	Depth (m)	Type/	Results	(m)	(thickness)	Legend	Description	1
		Ref		· ,			MADE GROUND: Concrete with rebar.	t
				40.98	0.22		rebar encountered. (0.08m)	F
					(0.38)		gas membrane. (0.21m)	L
	0.70	50		40.60	0.60		MADE GROUND: Grey gravelly slightly clayey sand. Gravel is angular to subangular fine to coarse concrete, brick and mudstone.	<u> </u>
	0.70 0.70	ES WAC			(0.40)		MADE GROUND: Light grey sandy gravel. Gravel is angular to subangular fine to coarse concrete and mudstone.	F
0	1.00	SPT(C)	N=29 (6,6/6,9,8,6) N60=46	40.20	1.00		MADE GROUND: Firm greyish brown slightly sandy gravelly clay. Gravel is angular to subangular fine to coarse slate, mudstone and brick.	F
0				39.80	1.40		no recovery. (1.00 - 1.25m)	上
0	1.50	D		00.00	(0.40)		MADE GROUND: Grey gravelly slightly clayey sand. Gravel is angular to subangular fine to coarse slate, concrete and mudstone.	F
0				39.40	1.80	X 8	E' 'I I I I I I I I I I I I I I I I I I	Ŧ
<u>.</u>	2.00	SPT(C)	N=17 (6,4/4,4,4,5) N60=27			~~~ ×~~* ·~~.*	Firm greyish brown slightly sandy gravelly silty CLAY. Gravel is angular to subangular fine to coarse mudstone and slate.	F
						~~ <u>~</u> ×		F
\otimes	0.50				(1.20)	× ~ ~ *		
\otimes	2.50	D				% <u>*</u> ⊗ . ₹		F
						~~~~ <u>~</u> ~~~~~*	pocket of slate. (2.80 - 3.00m)	F
$\otimes$	2.90 2.90	HV D	39 (kPa)	38.20	3.00	% · 8 . % · 8 .	, , ,	╪
$\otimes$	3.00	SPT(C)	N=19 (3,2/5,5,4,5) N60=30			<b>∞</b> • ×	Stiff brown slightly sandy slightly gravelly silty CLAY. Gravel is angular to subangular fine to coarse mudstone.	L
$\otimes$						× ~ * ×	no recovery. (3.00 - 3.50m)	-
$\otimes$						<u>~~~~</u>		F
$\otimes$						× 0 ×		L
						% <u>~</u> 8 . ₹		F
$X \rightarrow$	4.00	SPT(C)	N=17 (2,3/3,3,5,6) N60=27			$\overline{\times}_{o}$ $\overline{\times}_{o}$ $\overline{\times}$		F
$\otimes$	4.00-5.00	В	(=,=,=,=,=,=,= =.			<u>∞ · ∞ .</u>		
$\otimes$						× 0 × ×		
	4.40	HV	76 (kPa)			% <u>*</u> 8 . ×		F
$\otimes$						× 0 × ×		H
$\otimes$						<u>~_`₩.</u>		F
$\boxtimes$	4.90 5.00	HV SPT(C)	73 (kPa) N=19 (3,3/4,4,5,6) N60=30		(4.00)	×°_×°,		þ
$\otimes$	3.00	0. 1(0)	14-10 (0,0/7,7,0,0) 1400=00		`/	~ <u>~</u> ~	no recovery. (5.00 - 7.00m)	+
						× ° × ×		F
$\boxtimes$						<u>·</u> <del>×</del>		L
$\otimes$						X		+
$\otimes$								þ
$\forall$						* * * * * * * * * * * * * * * * * * *		+
$\otimes$	6.00	SPT(C)	N=20 (3,4/4,5,5,6) N60=32			×°~×		F
$\otimes$						<u>~~~</u> <del>∞</del> . <del>∞</del> . <del>×</del>		L
K>						$\times \circ \times \times$		+
X		1				× × ×		þ
								- 1
						<u>×° × '</u>		r
						· · ·		

Checked By: Peter Searing Approved By: Peter Searing Status: FINAL

monitoring well upon completion.

1) Location CAT scanned prior to drilling. 2) Groundwater encountered at 3.9m bgl. 3) Borehole installation with

0.00 - 7.00m WLS Window Sampler



WS03 Sheet 1 of 1

 
 Hole Type WLS
 Easting 218752.00
 Northing 246828.00
 Ground Level (m) 40.96
 Scale 1:35

 Project Name Cardigan
 Project No. 941.02
 Start Date 2025-10-22
 End Date 2025-10-22

Client Lidl Gr	eat B	ritain Ltd				ultant ada Ltd					
_			Saı	mples and Tests		Depth		Strata			
Backfill	Wate	Depth (m)	Type/ Ref	Results	(m)	(thickness)	Legend	Description	1		
			1101		40.73	(0.23)		MADE GROUND: Concrete with rebar.  rebar encountered. (0.06 - 0.08m)	-		
$\bowtie$								gas membrane. (0.22m)	I Ι		
		0.50 0.50	ES WAC			(0.52)		MADE GROUND: Grey sandy slightly clayey gravel. Gravel is angular to subangular fine to coarse mudstone and concrete.	0.5		
		0.90	HV	81 (kPa)	40.21	0.75		MADE GROUND: Firm yellowish brown slightly sandy gravelly clay. Gravel is angular to subangular fine to coarse brick and mudstone.	-		
		1.00	SPT(C)	N=33 (1,2/4,5,9,15) N60=53		(0.70)			—1.0 —		
					39.51	1.45		MADE GROUND: Greyish brown sandy slightly clayey gravel. Gravel is	 		
						(0.55)		angular to subangular fine to coarse brick, concrete, mudstone and slate.	-		
		2.00 2.00-3.00	SPT(C)	N=37 (10,10/9,10,9,9) N60=59	38.96	2.00	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Brownish grey sandy clayey GRAVEL. Gravel is fine to coarse, angular	2.0		
						(0.70)		to subangular slate and mudstone.	-		
					38.26	2.70	-0.0.		—2.5 —		
					36.20	2.70	× · × · × · × · × · × · · × · · × · · × · · × · · × · · · × · · · · · · · · · · · · · · · · · · · ·	Firm brown sandy gravelly silty CLAY. Gravel is angular to subrounded fine to coarse mudstone.	-		
		3.00	SPT(C)	N=16 (2,5/7,4,3,2) N60=26			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	no recovery. (3.00 - 3.55m)	3.0		
							× 0 8 . × 0 . × × 0 . ×		-		
	abla						× · · × × · × · · ×		3.5  		
		4.00	SPT(C)	N=12 (2,2/3,3,3,3) N60=19			* · × · × · × · × · × · × · × · × · × ·	(100 100 )	_ 4.0		
							~~~ ~~~ ~~~ ~~~ ~~~	no recovery. (4.00 - 4.80m)	-		
							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		_ 4.5		
						(4.30)	×		-		
		5.00	SPT(C)	N=12 (2,1/2,3,3,4) N60=19		, ,	× × × × × × × × × × × × × × × × × × ×	no recovery. (5.00 - 5.90m)	5.0 		
							₹ <u>*</u> * <u>*</u> * * * * * * * * * * * * * * * * * *		-		
							× 4 × × × × × × × × × × × × × × × × × ×		—5.5 - -		
		5.80	D				* o * * . * * × × * . * * · * *				
		6.00	SPT(C)	N=20 (5,4/4,5,5,6) N60=32			× <u>~ ×</u> × × × × × × × × × × × × × × × × × ×	no recovery. (6.00 - 7.00m)	6.0		
							<u>~~~~</u> <u>~~~</u> × <u>~~</u> ~		F		
							× × ×		6.5  		
							× v × × × × × × × × × × × × × × × × × ×		-		
XXXX		7.00	SPT(C)	N=20 (3,4/4,5,5,6) N60=32	33.96	7.00		End of Borehole at 7.00m	7.0		
Remar		CAT	nad prior	to drilling 2) Groundwater encour	torod of	2 0m l	hal 2) Do		Logger		

Checked By: Peter Searing Approved By: Peter Searing Status: FINAL

arisings upon completion.

1) Location CAT scanned prior to drilling. 2) Groundwater encountered at 3.8m bgl. 3) Borehole backfilled with

JH

0.00 - 7.00m WLS Window Sampler



WS04 Sheet 1 of 1

 
 Hole Type WLS
 Easting 218762.00
 Northing 246820.00
 Ground Level (m) 40.45
 Scale 1:35

 Project Name Cardigan
 Project No. 941.02
 Start Date 2025-10-22
 End Date 2025-10-22

Lidl Great Britain Ltd  Inst/ Backfill  Depth (m)	Samp						
Backfill Space Depth (m)		les and Tests	Level	Depth		Strata	
	Type/ Ref	Results	(m)	(thickness)	Legend	Description	1
	Kei		40.23	(0.22) 0.22 (0.40)		MADE GROUND: Concrete with rebar. rebar encountered. (0.05 - 0.11m) gas membrane. (0.21m)	<u> </u>
			39.83	0.62		MADE GROUND: Grey sandy slightly clayey gravel. Gravel is angular to subangular fine to coarse mudstone and concrete.  MADE GROUND: Grey gravelly slightly clayey sand. Gravel is angular to	0.5
1.00 1.10 1.20	SPT(C) HV D	N=13 (1,1/2,3,4,4) N60=21 106 (kPa)	39.50	0.95		subangular fine to coarse mudstone and concrete.  MADE GROUND: Stiff yellowish brown slightly sandy slightly gravelly clay. Gravel is angular to subangular fine to coarse mudstone.	1.0
			39.00	1.45		MADE GROUND: Stiff greyish brown sandy gravelly clay. Gravel is angular to subangular fine to coarse brick, slate, mudstone and	1.5
1.70 1.70	ES WAC			(0.55)		concrete.	F
2.00	SPT(C)	N=50 for 285mm (11,13/13,13,13,11 for 60mm) N60=80	38.45 38.25	2.00 (0.20) 2.20		MADE GROUND: Yellowish brown gravelly very clayey SAND. Gravel is angular to subangular fine to coarse brick, asphalt and mudstone.	2.0
Remarks	ned prior to	drilling. 2) No groundwater enco	w.interes	during	a drilling	3) Borehole backfilled  Method, Plant, Stability, Dimensions 0.00 - 2.20m WLS Window Sampler	

Checked By: Peter Searing Approved By: Peter Searing Status: FINAL

with arisings upon completion.



WS05 Sheet 1 of 1

 Hole Type
 Easting
 Northing
 Ground Level (m)
 Scale

 WLS
 218781.00
 246821.00
 41.34
 1:35

 Project Name
 Project No.
 Start Date
 End Date

 Cardigan
 941.02
 2025-10-23
 2025-10-23

<b>Client</b> Lidl Gre	at Bı	ritain Ltd			Cons	ultant ida Ltd		Contractor			
Inst/	els	Depth (m)		nples and Tests	Level	Depth (thickness)		Strata			
Backfill	[€ §	Depth (m)	Type/ Ref	Results	(m)		Legend	Description			
		0.07	ES		44.00	(0.14) 0.14		MADE GROUND: Asphalt.	<b>†</b>		
					41.20			MADE GROUND: Grey gravelly sand. Gravel is angular to subangular fine to coarse concrete, brick, sandstone and mudstone.	1		
						(0.56)		no recovery. (0.14 - 0.40m)	0.5 		
		0.70	SPT(C)	N=50 for 125mm (25 for 60mm/26,24 for 50mm) N60=80	40.64	0.70		End of Borehole at 0.70m	Ė		
									1.0		
									—1.5 —		
									2.0		
									Ė		
									2.5		
									-		
									3.0		
									-		
									3.5		
									-		
									4.0		
									- -4.5		
									-5.0		
									E		
									5.5		
									-		
									6.0		
									- - -6.5		
									0.3		
									F		
									7.0		
Remark 1) Loca	s ation	CAT scan	ned prior	to drilling. 2) No groundwater enco	untered	d during	drilling.	Method, Plant, Stability, Dimensions 3) Borehole backfilled 0.00 - 0.70m WLS Window Sampler	Log		

Checked By: Peter Searing Approved By: Peter Searing Status: FINAL SPT N60 = N(raw) * (Hammer Energy Ratio / 60) to nearest whole number

with arisings upon completion. 4) Termination due to concrete obstruction.



WS05a Sheet 1 of 1

 Hole Type
 Easting
 Northing
 Ground Level (m)
 Scale

 WLS
 218765.00
 246841.00
 41.15
 1:35

 Project Name
 Project No.
 Start Date
 End Date

 Cardigan
 941.02
 2025-10-23
 2025-10-23

ent					Cons	ultant		Contractor	
ll Gre	_	ritain Ltd			Rema	ada Ltd			
st/	lels els			nples and Tests	Level	Depth (thickness)		Strata	
kfill	Le wa	Depth (m)	Type/ Ref	Results	(m)	(m)	Legend	Description	
$\otimes$						(0.27)		MADE GROUND: Asphalt.	-
$\otimes$					40.88	0.27	********	MADE ODOLIND. Off and and the angular day of the control of the co	
X						(0.33)		MADE GROUND: Stiff grey sandy gravelly clay. Gravel is angular to subangular fine to coarse slate, concrete, mudstone and sandstone.	L
×		0.60	SPT(C)	N=50 for 145mm	40.55	0.60		Find of Davabala at 0.60m	·F
				(25 for 65mm/27,23 for 70mm) N60=80				End of Borehole at 0.60m	F
		0.60	D						E
									F
									F
									F
									-
									-
									L
									_
									L.
									H
									L
									H
									F
									L
									-
									F
									L
									H
									F
									+
									F
									H
									F
									L
									F
									F
									L
									F
									F
	ks							Method, Plant, Stability, Dimensions	

Checked By: Peter Searing Approved By: Peter Searing Status: FINAL

with arisings upon completion. 4) Termination due to concrete obstruction.



WS06 Sheet 1 of 1

 
 Hole Type WLS
 Easting 218784.00
 Northing 246840.00
 Ground Level (m) 41.24
 Scale 1:35

 Project Name Cardigan
 Project No. 941.02
 Start Date 2025-10-23
 End Date 2025-10-23

nt Great I	Britain Ltd				ultant ada Ltd	Contractor				
t/ Ja s		Samp	oles and Tests	Level	Depth (thickness)	Strata				
dill   N	Depth (m)	Type/ Ref	Results	(m)	(m)	end Description				
	0.07	ES		41.10	(0.14) 0.14 (0.56)	MADE GROUND: Asphalt.  MADE GROUND: Grey slightly sandy clayey gravel. Gravel is angular to subangular fine to coarse concrete, slate and mudstone.	-			
				40.54	0.70	MADE GROUND: Stiff greyish brown slightly sandy slightly gravelly clay.  Gravel is angular to subangular fine to medium slate and mudstone.	+			
	0.90 1.00	HV SPT(C)	68 (kPa) N=7 (1,1/1,2,2,2) N60=11	40.24	1.00	MADE GROUND: Firm brown slightly sandy gravelly clay. Gravel is angular to subangular fine to coarse brick, mudstone, slate and porcelain.	-			
					(1.10)	no recovery. (1.00 - 1.30m)	-			
	2.00	SPT(C)	N=13 (2,2/2,3,4,4) N60=21	39.14	2.10	Stiff brown slightly sandy silty CLAY.	+			
	2.70	D			(0.90)	^ <del>x</del>				
}	2.80	HV	80 (kPa)			$\overline{\times}$ .	F			
	3.00	SPT(C)	N=14 (2,2/3,3,4,4) N60=22	38.24	3.00	Borehole advanced by continous SPT with no recovery attempted.	-			
	3.50	SPT(C)	N=22 (4,4/5,5,6,6) N60=35		(1.50)					
	4.00	SPT(C)	N=31 (7,7/6,8,8,9) N60=50							
	4.50	SPT(C)	N=50 for 290mm (10,11/12,14,13,11 for 65mm) N60=80	36.74	4.50	End of Borehole at 4.50m	-  -			
							L			

Checked By: Peter Searing Approved By: Peter Searing Status: FINAL

arisings.

1) Location CAT scanned prior to drilling. 2) No groundwater encountered during drilling. 3) Drilling to 3.0m and

continuous SPT to 5.0m or refusal because of time restraints due to working at night. 4) Backfilled with

0.00 - 4.50m WLS Window Sampler



WS07 Sheet 1 of 1

 Hole Type
 Easting
 Northing
 Ground Level (m)
 Scale

 WLS
 218801.00
 246831.00
 41.50
 1:35

 Project Name
 Project No.
 Start Date
 End Date

 Cardigan
 941.02
 2025-10-22
 2025-10-22

Client Lidl Gr	eat B	ritain Ltd		Gardigan		ultant ada Ltd	Contractor	
			Sai	mples and Tests		Depth (thickness)	Strata	
Backfill	Wate Level	Depth (m)	Type/ Ref	Results	(m)	(thickness)	Legend Description	-
		,	Rei			(0.19)	MADE GROUND: Asphalt.	
					41.31	0.19 (0.31)	MADE GROUND: Grey slightly sandy slightly clayey gravel. Gravel is angular to subangular fine to coarse mudstone and sandstone.	+
					41.00	0.50	MADE GROUND: Grey slightly sandy gravel. Gravel is angular to	0.5
						(0.50)	subangular fine to coarse slate, mudstone and concrete.	-
		1.00	SPT(C)	N=4 (1,0/1,1,0,2) N60=6	40.50	1.00	x · x · x Stiff brown slightly sandy silty CLAY.	1.0
							$\begin{array}{cccc} \overline{x} \cdot \overline{x} \cdot \overline{x} \\ \overline{x} \cdot \overline{x} \cdot \overline{x} \end{array}$	_
		1.60	D				$\begin{array}{c c} \overline{\times} & \times \\ \hline \times & \overline{\times} \\ \end{array}$	—1.5 —
							$\begin{array}{c} \times \times$	_
		2.00	SPT(C)	N=13 (1,2/2,3,4,4) N60=21		(2.00)	no recovery. $(2.00 - 3.00m)$	—2.0 —
							$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_ _ 2.5
							$\begin{array}{c} \overline{\times} \cdot \overline{\times} \\ \overline{\times} \cdot \overline{\times} \end{array}$	-
							$\begin{array}{c} \times \times \times \\ \times \times \times \\ \hline \times \times \end{array}$	F
		3.00	SPT(C)	N=20 (3,3/4,5,5,6) N60=32	38.50	3.00	Borehole advanced by continous SPT with no recovery attempted.	3.0
		3.50	SPT(C)	N=30 (7,7/7,7,8,8) N60=48		(1.00)		_ _ 3.5
		3.30	01 1(0)	N=30 (7,777,7,0,0) N00=40		(,		-
		4.00	SPT(C)	N=50 for 295mm	37.50	4.00		4.0
			(5)	(9,11/12,13,13,12 for 70mm) N60=80			End of Borehole at 4.00m	-
								_ _ 4.5
								-
								—5.0 —
								-
								5.5
								6.0
								6.5
								-
								7.0
Bomor				I	1		Mothed Plant Stability Dimensions	Loggor

1) Location CAT scanned prior to drilling. 2) No groundwater encountered during drilling. 3) Drilling to 3.0m and continuous SPT to 5.0m or refusal because of time restraints due to working at night. 4) Backfilled with arisings.

Method, Plant, Stability, Dimensions 0.00 - 4.00m WLS Window Sampler **Logger** JH

Checked By: Peter Searing Approved By: Peter Searing Status: FINAL SPT N60 = N(raw) * (Hammer Energy Ratio / 60) to nearest whole number



WS08 Sheet 1 of 1

 Hole Type
 Easting
 Northing
 Ground Level (m)
 Scale

 WLS
 218818.00
 246857.00
 41.30
 1:35

 Project Name
 Cardigan
 Project No.
 Start Date
 End Date

 Cardigan
 941.02
 2025-10-22
 2025-10-22

				Cardigan			941.02 2025-10-22 2025-10-22	
Client Lidl Gr	eat B	ritain Ltd				ultant ada Ltd	Contractor	
			Sar	nples and Tests	_	Depth (thickness)		
Backfill	Wate	Depth (m)	Type/ Ref	Results	(m)	(thickness)	Legend Description	
			IXEI			(0.16)	MADE GROUND: Asphalt.	_
					41.14	0.16	MADE GROUND: Brownish grey very sandy slightly clayey gravel. Gravel is angular to subangular fine to coarse mudstone, sandstone and brick.	- - - 0.5
		0.60 0.60	ES WAC			(1.34)		- - -
		1.00	SPT(C)	N=8 (1,1/2,2,2,2) N60=13				—1.0 - -
		1.50	HV	80 (kPa)	39.80	1.50	Stiff greyish brown slightly sandy slghtly gravelly CLAY. Gravel is subangular fine to coarse mudstone.	- 1.5 
		2.00	SPT(C)	N=15 (2,2/3,3,4,5) N60=24		(1.50)		- - 2.0 - -
							no recovery. (2.60 - 3.00m)	- 2.5 - - -
		3.00	SPT(C)	N=24 (5,5/5,6,6,7) N60=38	38.30	3.00	Borehole advanced by continous SPT with no recovery attempted.	- 3.0 
		3.50	SPT(C)	N=40 (7,7/10,10,10,10) N60=64		(1.00)		- - 3.5 - -
		4.00	SPT(C)	N=50 for 275mm (11,12/12,14,15,9 for 50mm) N60=80	37.30	4.00	End of Borehole at 4.00m	- - 4.0 -
								- - 4.5 -
								- - - 5.0
								- - -
								—5.5 - - -
								- 6.0 
								- - 6.5
								- - - 7.0
Remar		CAT scan	ned prior	to drilling. 2) No groundwater enc	ountere	d during	Method, Plant, Stability, Dimensions Lo	ogger

Checked By: Peter Searing Approved By: Peter Searing Status: FINAL SPT N60 = N(raw) * (Hammer Energy Ratio / 60) to nearest whole number

arisings.

1) Location CAT scanned prior to drilling. 2) No groundwater encountered during drilling. 3) Drilling to 3.0m and

continuous SPT to 5.0m or refusal because of time restraints due to working at night. 4) Backfilled with

0.00 - 4.00m WLS Window Sampler



WS09 Sheet 1 of 1

 
 Hole Type WLS
 Easting 218835.00
 Northing 246841.00
 Ground Level (m) 41.84
 Scale 1:35

 Project Name Cardigan
 Project No. 941.02
 Start Date 2025-10-22
 End Date 2025-10-22

Client Lidl Gr	eat B	Britain Ltd		'		ultant ada Ltd		Contractor	
	_		San	nples and Tests	1	Depth (thickness)		Strata	
Backfill	Wat	Depth (m)	Type/ Ref	Results	(m)	(m)	Legend	Description	
					41.66	(0.18) 0.18		MADE GROUND: Asphalt.  MADE GROUND: Grey sandy slightly clayey gravel. Gravel is angular to subangular fine to coarse mudstone and concrete.	- - - -
					41.09	0.75	××××××××××××××××××××××××××××××××××××××	Firm brownish grey gravelly sandy CLAY. Gravel is subangular to	
$\ggg$		0.85 1.00	HV SPT(C)	58 (kPa) N=30 (3,4/5,7,8,10) N60=48	40.84	1.00	-0.0.	subrounded fine to coarse mudstone, sandstone and quartz.	1.0
			G. 1(0)	1=00 (6,10), (6,10), (60=10		(1.00)		Very stiff brownish grey slightly sandy, slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse mudstone, sandstone and quartz.  no recovery. (1.00 - 1.65m)	_ _ _ _ 1.5
	abla	1.60	D						-
		1.90 2.00	HV SPT(C)	86 (kPa) N=23 (5,5/5,5,6,7) N60=37	39.84	2.00		Firm brownish grey very gravelly CLAY. Gravel is subangular to subrounded fine to coarse mudstone, sandstone and quartz.	2.0
		2.70	D					no recovery. (2.00 - 2.45m)	 2.5 
		3.00	SPT(C)	N=18 (4,4/5,4,4,5) N60=29		(2.00)	000	Borehole advanced by continous SPT with no recovery attempted.	3.0
		3.50	SPT(C)	N=29 (5,6/6,6,8,9) N60=46					_ _ _ 3.5
					07.04	4.00			4.0
		4.00	SPT(C)	N=50 for 290mm (9,10/12,14,13,11 for 65mm) N60=80	37.84 37.84	4.00 (1.00) 4.00		End of Borehole at 4.00m	
									—4.5 –
									_ 5.0
									- - -
									— 5.5 – –
									6.0
									-
									6.5  
									_ _ 
Remar 1) Loc		CAT scan	ned prior	to drilling. 2) Groundwater encou	ntered at	1.65m	bal. 3) F	Method, Plant, Stability, Dimensions  Orilling to 3.0m and 0.00 - 4.00m WLS Window Sampler	Logger

Checked By: Peter Searing Approved By: Peter Searing Status: FINAL

arisings.

1) Location CAT scanned prior to drilling. 2) Groundwater encountered at 1.65m bgl. 3) Drilling to 3.0m and

continuous SPT to 5.0m or refusal because of time restraints due to working at night. 4) Backfilled with

0.00 - 4.00m WLS Window Sampler





# APPENDIX A SPT Hammer Energy Test Certificate



# 3)

**SPT Hammer Energy Test Report** 

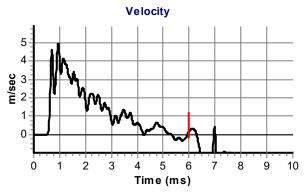
in accordance with BSEN ISO 22476-3:2005

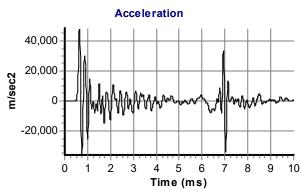
Socotec uk Progress close Binley Coventry CV3 2TF SPT Hammer Ref: 110.80

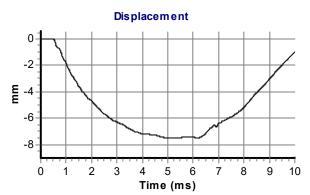
Test Date: 30/01/2025 Report Date: 30/01/2025 File Name: 110.80.spt

Test Operator: DP

#### **Instrumented Rod Data**


# Diameter $d_r$ (mm): 54 Wall Thickness $t_r$ (mm): 6.0 Assumed Modulus $E_a$ (GPa): 208 Accelerometer No.1: 72570 Accelerometer No.2: 72571


### **SPT Hammer Information**


Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 12.6

### **Comments / Location**









#### **Calculations**

Area of Rod A (mm2): 905 Theoretical Energy  $E_{theor}$  (J): 473 Measured Energy  $E_{meas}$  (J): 453

Energy Ratio E_r (%):

96

Signed: D Perrett

Title: Drilling Supervisor





### **APPENDIX B**

# **Dynamic Cone Penetrometer (DCP) Test Results**



	Client:	Lidl Great Britain Ltd	Site Location:	Cardigan	Test No:	CBR1	Location:	218784 246840
I					Start			
ı	Project No:	941.02	Date:	23.10.2025	Depth:	0.14m bgl	Test Strata:	sandy clayey GRAVEL

 $Log10(CBR) = 2.480-1.057 \times Log10(mm/blow)$ 

Weather:	Dry	' Da

		-5 -(- /		- 3	- 1 ,	,				Weathe	er:	Dry Dark				
No of Blows	Depth Reading mm	Penetration/Blow mm	CBR %							mated						
0	216	0			0	10	20	) :	30	40	50	60	70	80	90	100
1	234	18.0	14.2		0											
2	238	4.0	69.8													
4	247	4.5	61.6													
6	253	3.0	94.6													
11	275	4.4	63.1		100											
16	284	1.8	162.2													
26	295	1.1	273.1													
36	305	1.0	302.0		200											
46	314	0.9	337.6		200											
							•						-			
																•
					300											
					300											
					400											
					400											
				Ê												
				E E	500											
				Depth (mm)	500											
				ă												
					600											
					700											
					800											
					900											
				1	000											

Notes:

Tested by : J Hughes Date: 23.10.25



Client:	Lidl Great Britain Ltd	Site Location:	Cardigan	Test No:	CBR2	Location:	218801 246831
				Start			
Project No:	941.02	Date:	22.10.2025	Depth:	0.19m bgl	Test Strata:	sandy clayey GRAVEL

 $Log10(CBR) = 2.480-1.057 \times Log10(mm/blow)$ 

Dry Dark

				Weather. Dry Dark												
No of Blows	Depth Reading mm	Penetration/Blow mm	CBR %						Estima							
0	221	0			)	10	20	30	40	50	0 6	60	70	80	90	100
1	231	10.0	26.5	0												
3	238	3.5	80.3													
8	255	3.4	82.8													
18	274	1.9	153.2													
28	291	1.7	172.4	100												
38	304		228.9													
		1.3														
48	309	0.5	628.3													
				200												
								•								
														-		
				300												
				400												
				m (m												
				Depth (mm)												
				Cept												
				_												
				600												
				700												
				800												
				900												
				1000												

Notes:

Tested by J Hughes Date: 22.10.25



ı								
ı	Client:	Lidl Great Britain Ltd	Site Location:	Cardigan	Test No:	CBR3	Location:	218818 246857
ı					Start			
ı	Project No:	941.02	Date:	22.10.2025	Depth:	0.16m bgl	Test Strata:	sandy clayey GRAVEL

 $Log10(CBR) = 2.480-1.057 \times Log10(mm/blow)$ 

eather: Dry Dark

				Weather. Dry Dark											
No of Blows	Depth Reading mm	Penetration/BI ow mm	CBR %						stimate						
0	213	0			0	10	20	30	40	50	60	70	80	90	100
1	231	18.0	14.2	(											
2	240	9.0	29.6												
4	251	5.5	49.8												
7	262	3.7	76.5												
12	288	5.2	52.9	100											
17	306	3.6	78.0												
22	324	3.6	78.0												
32	355	3.1	91.3												
42	369	1.4	211.6	200											
72	303	1.7	211.0			•									
													-		
				300	.					•					
				300									1		
				400											
				400											
				Ē											
				Depth (mm)											
				epth											
				ā											
				600											
				700											
				800											
				900	-										
				1000											

Notes:

Tested by J Hughes Date: 22.10.25



ſ								
ı	Client:	Lidl Great Britain Ltd	Site Location:	Cardigan	Test No:	CBR4	Location:	218835 246841
ı					Start			
ı	Project No:	941.02	Date:	22.10.2025	Depth:	0.18m bgl	Test Strata:	sandy clayey GRAVEL

 $Log10(CBR) = 2.480-1.057 \times Log10(mm/blow)$ 

/eather: Dry Dark

				Weather: Dry Dark											
No of Blows	Depth Reading mm	Penetration/Blo w mm	CBR %						stimate						
0	210	0		0	0	10	20	30	40	50	60	70	80	90	100
1	232	22.0	11.5												
2	242	10.0	26.5												
3	245	3.0	94.6												
6	262	5.7	48.3	100											
9	272	3.3	84.6	100											
14	280	1.6	183.8												
19	292	2.4	119.7												
24	305	2.6	110.0	200											
34	317	1.2	249.1												
44	325	0.8	382.3				•								
										•				•	
				300											
				400											
				_											
				mr.											
				Depth (mm)											
				Dep											
				600											
				700											
				800											
				000											
				900											
				1000											
		[		1000											

Notes:

Tested by J Hughes Date: 22.10.25





# **APPENDIX C**Gas Analyser Calibration Certificate

# TEST DATE AND CONDITIONS Date 11/04/2025 Atmospheric Pressure 1005 mB Ambient Temperature 21.3 °C Environics Serial No. 9370

### GFM436 Final Inspection & Calibration Check Certificate

Customer	Remada Ltd
Certificate Number	126129
Order Number	342447

Serial Number	14048
Software Version	G436-00.0029/0010

# GAS DATA LTD Unit D Earlplace Business Park Fletchamstead Highway Coventry CV4 9XL

Tel 02476303311

Recalibration DUE Date
11/04/26

Fax 02476307711

		Instrum	ent Checks				
Keyboard		<b>*</b>	Display Contrast	1			
Pump Flow In	500	Accept > 200 cc/min	Pump Flow @ -200mB	300	300 Accept > 200 cc/min		
Clock Set / Running		1	Labels Fitted		1		

			Gas Checks				
	CH ₄		CO ₂		02		
	Instrument Gas	True Gas	Instrument Gas	True Gas	Instrument Gas	True Gas	
	Readings %	Value %	ue % Readings %		Readings %	Value %	
Sensor	59.8		39.5	10	20.9		
	Accept ±3.0	00	Accept ±3.0	40	Accept ±0.5	20.9	
	5.0	5	5.0		6.0		
	Accept ±0.3	3	Accept ±0.3	5	Accept ±0.3	6	
Zero Reading	0.0	0	0.0	0	0.0		
100% N2	Accept ±0.0	0	Accept ±0.0	0	Accept ±0.1		

Nation 1			Optional (	Gas Checks				
Applie	d Gas & Range	Concentration Tested @		Instrumer	nt Readings (ppm)			
Gas Type	Range (ppm)	(ppm)		Zero Reading	Instru	Instrument Gas Reading		
H2S	5000	1500	0	Accept ±0.0	1500	Accept ±5.0%		
со	2000	1000	0	Accept ±0.0	1003	Accept ±5.0%		
Hexane	2.0%	2.0%	0	Accept ±0.0	1.99	Accept ±10.0%		

				Cross Gas	Effects			
Applied	i Gas (ppm)			I	nstrument	Readings (ppm	)	
Gas Type	Concentration	Toxic 1:	H2S	Toxic 2:	СО	Toxic 3:	нех	
H2S	1500	150	00	0		0		
со	1000	90	0	100	1003			
Hexane	2.0%	. 0	)	0		0 1.9		

	Pressure Checks										
	Atmospheric Pressure [AP] (mB)										
Current Atmospheric	Current Atmospheric Pressure (mB) Instrument Atmospheric Pressure Reading										
AP Open P	orts	1005	Accept ±2.0								
	+800 mB	800	Accept ±5.0								
AP Port (Internal)	+1200mb	1200	Accept ±5.0								

	Flow Checks											
Во	rehole Flow		Diffe	Differential Pressure								
Applied Reading (l/h)	Instrum	nent Reading (l/h)	Applied Pressure (Pa)	Instru	ment Reading (Pa)							
-30	-30.1	Accept ±3.0	-391	-397	Accept ±50							
-3	-3.0	Accept ±1.0	-17	-18	Accept ±6.0							
0	0.0	Accept ±0.0	0	0	Accept ±0.5							
3	3.0	Accept ±0.5	15	16	Accept ±3.0							
30	30.0	Accept ±3.0	344	344	Accept ±50							
60	60.2	Accept ±6.0	1081	1098	Accept ±130							
90	91.6	Accept ±9.0	2141	2238	Accept ±250							

Temper	Temperature Checks								
Calibration Temperature									
Applied Temperature ⁰ C	Instrument To	emperature Reading ⁰ C							
-10	-10.0	Accept ±2.0							
0	0.0	Accept ±1.0							
30	30.0	Accept ±1.0							
60	60.0	Accept ±1.0							
100	100.0	Accept ±1.0							

Technician:	
Jack Rutland	

Date Tested: 11/04/2025

The instrument identified by the serial number stated above has been tested by Gas Data personnel for calibration accuracy on the date and under the ambient conditions stated. Gas Data Ltd internal BS EN ISO9001:2015, BS EN ISO14001:2015, BS EN ISO45001:2018 compliant workshop procedures were followed to apply known calibration test gases, gas flow rates, pressures and temperatures of the values stated.

The results displayed on the instrument at each stage are recorded above.

TEST	DATE AND CON	DITIONS	
Date	11-4.	25	
Atmospher	ric Pressure	1005	mB
Ambient To	emperature	21.3	°C
Environics	Serial No.	502	9

GAS DATA LTD Unit D Earlplace Business Park Fletchamstead Highway Coventry CV4 9XL UK +44 (0) 24 7630 3311



GFM	436-1 OUTWAR	D INSPECTION & QUAI	LITY CHECK	<b>SHEET</b>
The Market State		INSTRUMENT DETAILS		
SO Number	Instrument Type	Instrument Serial Number + S	W Version	Job Number(s)
342447	GFH436	14048 9436-	29/10	126129
Calibration Techn	ician	) fit	Date	11.4.25
Inspection Technic	cian J.	Elleans	Date	15-Ci-23

	INSTRUMENT	Pass (P), Fail (F) or	INSTRUMENT PACKING	Tick if
	CHECKS	not applicable (NA)	LIST	included
Function	Dust Caps Fitted	P	Instrument	
Tests	Keyboard Test (All Keys)	P	Leather Case	1
	Backlight	P	Instrument Strap	1/
	Clock Set / Running	P	AC Battery Charger (UK)	
	Comms Test	P	AC Battery Charger (EURO)	X
	Pump Flow Test (In & Out)	P	AC Battery Charger (US)	×
	Overall Leak Test (30mB)	n/a	AC Battery Charger (AUS)	×
	Battery Charge Test	P	Gas Sample Pipe - (new issue)	V
	Service Date set to?	11/04/26	Flow Sample Pipe - (new issue)	
Channel	Data Logging Enabled?	P	Hard Carry Case	
Tests	Verify CH4/LEL/Hexane/PID	P	Spares Pot	1
	Verify CO2	P	Allen Key	V
	Verify O2	P	Temperature Probe	X
	Verify H2S	P	Vane Anemometer	Y
	Verify CO	P	USB Cable	×
	Verify LEL	P	USB Memory stick	X
	Verify 1st Option Gas	NIA	SM V5 Software   Ver 6.05	X
	Verify Atmospheric pressure	B	Internal Filter Pack Qty	×
	Verify differential pressure	P	External Filter Pack Qty	×
	Verify flow	P	Field Guide	É
	Verify temperature probe input	p	Extra Items:	
	Verify vane anemometer input	P	USED TUBING.	
DataBase	Jobcard(s) completed and signed	p	0504 1004110 .	
Checks	Jobcard(s) booked off database	P	74G-	
	Calibration certificate completed	P	7 // `	
	Complete & print QI record	n/a		
Label	No. of Calibration label fitted	GDC [379]	Comments:	
Checks	MCERTS label displayed	P	-	
	Warranty label fitted	P	1	
H2S Range	H2S Range from Sales Order	5000 ppm		
	H2S Range from Cal Cert	5000 ppm	*	
	Over-range value correct?	p	NIA	
OA	No. of High Range CH4/CO2	SIPCYL110 -56779	1 1/1	
Cylinders	No. of Low Range CH4/CO2/O2	11 -69849	1	
Used	No. of H2S	11 6037295	7	
	No. of CO	11 -69834	1	
	No. of Optional Cylinder	NIA		





# **APPENDIX D**Laboratory Chemical Analysis





Remada Ltd **Forward House** 17 High Street Henley-in-Arden Warwickshire B955AA

t:

e: peter.searing@remada.co.uk info@remada.co.uk joe.hughes@remada.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS** 

t: 01923 225404 f: 01923 237404

e: info-i2analytical@normecgroup.com

### **Analytical Report Number: 25-058455**

Samples received on: **Project / Site name:** Cardigan 24/10/2025

Samples instructed on/ Your job number: 941.02 28/10/2025

**Analysis started on:** 

Your order number: 941.02 **Analysis completed by:** 07/11/2025

**Report Issue Number:** 1 Report issued on: 07/11/2025

**Samples Analysed:** 7 soil samples - 3 leachate samples

Signed:

Dominika Liana **Junior Reporting Specialist** For & on behalf of i2 Analytical Ltd.

frame

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: soils - 4 weeks from reporting

> leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting - once the analysis is complete air

Excel copies of reports are only valid when accompanied by this PDF certificate.

Retention period for records and reports is minimum 6 years from the date of issue of the final report. Some records may be kept for longer according to other legal/best practice requirements.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





**Analytical Report Number: 25-058455 Project / Site name: Cardigan** 

Your Order No: 941.02

Total Phenols (monohydric)

Lab Sample Number				732028	732029	732030	732031	732032
Sample Reference				WS01	WS02	WS03	WS04	WS08
Sample Number				None Supplied				
Water Matrix				N/A	N/A	N/A	N/A	N/A
Depth (m)				0.70	0.70	0.50	1.70	0.60
Date Sampled				24/10/2025	24/10/2025	23/10/2025	23/10/2025	23/10/2025
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Test Limit of detection	Test Accreditation Status					
Stone Content	%	0.1	NONE	43.6	56.6	89.6	16.8	56.4
	%	0.01	NONE					
Moisture Content	% kg	0.01	NONE	3.1	1	1.9	13	3.9
Total mass of sample received	ĸg	0.1	NONE	2	2	2	2	2
Asbestos								
Asbestos in Soil Detected/Not Detected	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	KJK	KJK	KJK	KJK	KJK
Analysis completed	N/A	N/A	N/A	05/11/2025	05/11/2025	05/11/2025	05/11/2025	05/11/2025
General Inorganics pH (L005B)	pH Units	N/A	MCERTS	9.1	-	-	8.3	7.9
pH (L099)	pH Units	N/A	MCERTS	8.9	8.4	8.4	9.2	7.9
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Sulphate as SO ₄	%	0.005	MCERTS	-	-	-	0.104	-
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1)	mg/kg	2.5	MCERTS	-	-	-	440	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	-	-	218	-
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	-	-	-	23	-
Total Sulphur	mg/kg	50	MCERTS	-	-	-	710	-
Total Sulphur	%	0.005	MCERTS	-	-	-	0.071	-
Ammoniacal Nitrogen as NH ₄ +	mg/kg	0.5	MCERTS	-	-	-	< 0.5	-
Ammonium as NH ₄ + (10:1 leachate equivalent)	mg/l	0.05	MCERTS	-	-	-	< 0.05	-
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.001	< 0.0010	< 0.0010	0.013	< 0.0010
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	0.1	-	-	1.3	< 0.1
Loss on Ignition @ 450°C	%	0.2	MCERTS	0.4	-	-	3.7	0.7
Water Soluble Nitrate (2:1) as NO₃	mg/kg	2	NONE	-	-	-	21	-
Water Soluble Nitrate (2:1) as NO₃ (leachate equivalent)	mg/l	5	NONE	-	-	-	10	-
Acid Neutralisation Capacity	+/- mmol/kg	-9999	NONE	51	-	-	16	12
Total Phenols								

MCERTS

< 1.0

< 1.0

< 1.0

< 1.0

mg/kg

< 1.0





Analytical Report Number: 25-058455 Project / Site name: Cardigan Your Order No: 941.02

Lab Sample Number				732028	732029	732030	732031	732032
Sample Reference				WS01	WS02	WS03	WS04	WS08
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Water Matrix				N/A	N/A	N/A	N/A	N/A
Depth (m)				0.70	0.70	0.50	1.70	0.60
Date Sampled				24/10/2025	24/10/2025	23/10/2025	23/10/2025	23/10/2025
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
1			7	Hone Supplied	Horic Supplied	Hone Supplied	Hone Supplied	Hone Supplied
Analytical Parameter (Soil Analysis)	Units	Test Limit of detection	Test Accreditation Status					
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.07	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.1	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.43	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	2.2	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.7	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.2	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.1	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	1.2	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	0.52	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.95	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.42	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.13	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.45	< 0.05
Coronene	mg/kg	0.05	NONE	< 0.05	-	-	0.12	< 0.05
Total PAH					!			
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	< 0.80	< 0.80	< 0.80	11.4	< 0.80
Total WAC-17 PAHs	mg/kg	0.85	NONE	< 0.85	-	-	11.5	< 0.85
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	5.1	3.9	< 1.0	17	3.4
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.17	0.11	0.23	0.7	0.42
Boron (water soluble)	mg/kg	0.2	MCERTS	0.4	0.5	0.4	1	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.2	< 0.2	0.5	0.2	0.4
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1	NONE	6.5	6.4	5	29	6.9
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	6.5	6.4	5	29	6.9
Copper (aqua regia extractable)	mg/kg	1	MCERTS	9.4	17	5.1	44	9.6
Lead (aqua regia extractable)	mg/kg	1	MCERTS	3.1	4.1	1.5	88	3.5
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	4.7	3.5	3.1	22	6.9
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	6	5.4	3.7	37	5.5
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	9.1	15	8.2	120	8.3
Magnesium (leachate equivalent)	mg/l	2.5	NONE	-	-	-	3.5	-
Magnesium (water soluble)	mg/kg	5	NONE	-	-	-	6.9	-
· · · · · · · · · · · · · · · · · · ·								





Analytical Report Number: 25-058455 Project / Site name: Cardigan Your Order No: 941.02

				700000	700000	700000	700001	======
Lab Sample Number				732028	732029	732030	732031	732032
Sample Reference				WS01	WS02	WS03	WS04	WS08
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Water Matrix				N/A	N/A	N/A	N/A	N/A
Depth (m)				0.70	0.70	0.50	1.70	0.60
Date Sampled				24/10/2025	24/10/2025	23/10/2025	23/10/2025	23/10/2025
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Test Limit of detection	Test Accreditation Status					
Petroleum Hydrocarbons								
TPHCWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.01	MCERTS	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
TPHCWG - Aliphatic >EC6 - EC8 _{HS 1D AL}	mg/kg	0.01	MCERTS	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
TPHCWG - Aliphatic > EC8 - EC10 _{HS_1D_AL}	mg/kg	0.01	MCERTS	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
TPHCWG - Aliphatic > EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPHCWG - Aliphatic > EC12 - EC16 _{EH_CU_1D_AL}	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPHCWG - Aliphatic > EC16 - EC21 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPHCWG - Aliphatic > EC21 - EC35 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	40	< 8.0	14	< 8.0	< 8.0
TPHCWG - Aliphatic >EC51 - EC35 _{EH_CU_1D_AL} TPHCWG - Aliphatic >EC5 - EC35 _{EH_CU_HS_1D_AL}	mg/kg	10	NONE	40	< 10	14	< 10	< 10
THREAD AMPHAGE > 263 EH_CO+HS_ID_AL				40	< 10	14	< 10	< 10
TPHCWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.01	MCERTS	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
TPHCWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.01	MCERTS	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
TPHCWG - Aromatic >EC8 - EC10 Hs_1D_AR	mg/kg	0.02	MCERTS	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
TPHCWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPHCWG - Aromatic >EC12 - EC16 EH CU 1D AR	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPHCWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPHCWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	13	< 10	< 10	24	< 10
TPHCWG - Aromatic >EC5 - EC35 EH_CU+HS_1D_AR	mg/kg	10	NONE	13	< 10	< 10	24	< 10
					-			-
Mineral Oil (EC10 - EC40) _{EH_CU_1D_AL}	mg/kg	10	NONE	62	-	-	< 10	< 10
VOCs								
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Benzene	μg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Toluene	μg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Ethylbenzene	μg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
p & m-Xylene	μg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
o-Xylene	μg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total BTEX	μg/kg	10	MCERTS	< 10	-	-	< 10	< 10
PCBs by GC-MS	•			<u> </u>			-	-
PCB Congener 28	mg/kg	0.001	MCERTS	< 0.001	-	_	< 0.001	< 0.001
PCB Congener 52	mg/kg	0.001	MCERTS	< 0.001	_	_	< 0.001	< 0.001
PCB Congener 101	mg/kg	0.001	MCERTS	< 0.001	-	_	< 0.001	< 0.001
PCB Congener 118	mg/kg	0.001	MCERTS	< 0.001	_	-	< 0.001	< 0.001
PCB Congener 138	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	< 0.001
PCB Congener 153	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	< 0.001
PCB Congener 180	mg/kg	0.001	MCERTS	< 0.001	_	_	< 0.001	< 0.001
	1			. 5.551			. 0.001	. 0.001
Total PCBs	mg/kg	0.007	MCERTS	< 0.007	-	-	< 0.007	< 0.007
	1			· · · · · · · · · · · · · · · · · · ·				

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected





**Analytical Report Number: 25-058455** 

Project / Site name: Cardigan Your Order No: 941.02

Lab Sample Number	732033	732034			
Sample Reference	WS05	WS06			
Sample Number				None Supplied	None Supplied
Water Matrix				N/A	N/A
Depth (m)				0.07	0.07
Date Sampled				24/10/2025	24/10/2025
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Test Limit of detection	Test Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	0.15	0.42
Total mass of sample received	kg	0.1	NONE	0.13	0.42

### **Asbestos**

Asbestos in Soil Detected/Not Detected	Type	N/A	ISO 17025	-	-
Asbestos Analyst ID	N/A	N/A	N/A	-	-
Analysis completed	N/A	N/A	N/A	-	-

### **General Inorganics**

pH (L005B)	pH Units	N/A	MCERTS	-	-
pH (L099)	pH Units	N/A	MCERTS	-	-
Total Cyanide	mg/kg	1	MCERTS	-	-
Total Sulphate as SO ₄	%	0.005	MCERTS	-	-
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1)	mg/kg	2.5	MCERTS	-	-
Water Soluble SO ₄ 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	-
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	•	-
Total Sulphur	mg/kg	50	MCERTS	-	-
Total Sulphur	%	0.005	MCERTS	-	-
Ammoniacal Nitrogen as NH ₄ +	mg/kg	0.5	MCERTS	-	-
Ammonium as NH ₄ + (10:1 leachate equivalent)	mg/l	0.05	MCERTS	-	-
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	-	-
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	-	-
Loss on Ignition @ 450°C	%	0.2	MCERTS	-	-
Water Soluble Nitrate (2:1) as NO₃	mg/kg	2	NONE	-	-
Water Soluble Nitrate (2:1) as NO₃ (leachate equivalent)	mg/l	5	NONE	-	-
Acid Neutralisation Capacity	+/- mmol/kg	-9999	NONE	-	-

### **Total Phenois**

Total Friendis					
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	-





Analytical Report Number: 25-058455

Project / Site name: Cardigan Your Order No: 941.02

Lab Sample Number	732033	732034			
Sample Reference	WS05	WS06			
Sample Number	None Supplied	None Supplied			
Water Matrix	N/A	N/A			
Depth (m)	0.07	0.07			
Date Sampled	24/10/2025	24/10/2025			
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Test Limit of detection	Test Accreditation Status		

### **Speciated PAHs**

mg/kg	0.05	MCERTS	< 0.05	< 0.05
mg/kg	0.05	MCERTS	< 0.05	< 0.05
mg/kg	0.05	MCERTS	< 0.05	< 0.05
mg/kg	0.05	MCERTS	< 0.05	< 0.05
mg/kg	0.05	MCERTS	< 0.05	0.09
mg/kg	0.05	MCERTS	< 0.05	< 0.05
mg/kg	0.05	MCERTS	< 0.05	< 0.05
mg/kg	0.05	MCERTS	< 0.05	< 0.05
mg/kg	0.05	MCERTS	< 0.05	< 0.05
mg/kg	0.05	MCERTS	< 0.05	< 0.05
mg/kg	0.05	ISO 17025	< 0.05	< 0.05
mg/kg	0.05	ISO 17025	< 0.05	< 0.05
mg/kg	0.05	MCERTS	< 0.05	< 0.05
mg/kg	0.05	MCERTS	< 0.05	< 0.05
mg/kg	0.05	MCERTS	< 0.05	< 0.05
mg/kg	0.05	MCERTS	0.08	0.07
mg/kg	0.05	NONE	< 0.05	< 0.05
	mg/kg	mg/kg         0.05           mg/kg         0.05	mg/kg         0.05         MCERTS           mg/kg         0.05         ISO 17025           mg/kg         0.05         ISO 17025           mg/kg         0.05         MCERTS           mg/kg         0.05         MCERTS	mg/kg         0.05         MCERTS         < 0.05

### **Total PAH**

Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	-	-
Total WAC-17 PAHs	mg/kg	0.85	NONE	< 0.85	< 0.85

### **Heavy Metals / Metalloids**

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	-
Chromium (hexavalent)	mg/kg	1.8	MCERTS	-	-
Chromium (III)	mg/kg	1	NONE	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	-
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	-

Magnesium (leachate equivalent)	mg/l	2.5	NONE	-	-
Magnesium (water soluble)	mg/kg	5	NONE	-	-





**Analytical Report Number: 25-058455 Project / Site name: Cardigan** Your Order No: 941.02

Lab Sample Number				732033	732034
Sample Reference				WS05	WS06
Sample Number	None Supplied	None Supplied			
Water Matrix	N/A	N/A			
Depth (m)				0.07	0.07
Date Sampled				24/10/2025	24/10/2025
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Test Limit of detection	Test Accreditation Status		
Petroleum Hydrocarbons					
TPHCWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.01	MCERTS	-	-
TPHCWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.01	MCERTS	-	-
TPHCWG - Aliphatic >EC8 - EC10 _{HS_1D_AL}	mg/kg	0.01	MCERTS	-	-
TPHCWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	-	-
TPHCWG - Aliphatic >EC12 - EC16 _{EH_CU_1D_AL}	mg/kg	2	MCERTS	-	-
TPHCWG - Aliphatic >EC16 - EC21 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	-	-
TPHCWG - Aliphatic >EC21 - EC35 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	-	-
TPHCWG - Aliphatic >EC5 - EC35 _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	-	-
FPHCWG - Aromatic >EC5 - EC7 HS_1D_AR	ma/ka	0.01	MCERTS		1
FPHCWG - Aromatic >EC3 - EC7 Hs_1D_AR	mg/kg	0.01	MCERTS	-	-
TPHCWG - Aromatic >EC7 - EC6 Hs_1D_AR	mg/kg	0.01	MCERTS	-	-
TPHCWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg mg/kg	1	MCERTS	-	-
TPHCWG - Aromatic >EC12 - EC12 EH_CU_1D_AR	mg/kg	2	MCERTS	-	-
TPHCWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	-	-
TPHCWG - Aromatic > EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS		_
TPHCWG - Aromatic > EC5 - EC35 EH_CU+HS_1D_AR	mg/kg	10	NONE	-	-
Mineral Oil (EC10 - EC40) _{EH_CU_1D_AL}	mg/kg	10	NONE	-	-
VOCs					
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	MCERTS	-	-
Benzene	μg/kg	5	MCERTS	-	-
Toluene	μg/kg	5	MCERTS	-	-
Ethylbenzene	μg/kg 	5	MCERTS	-	-
o & m-Xylene o-Xylene	μg/kg μg/kg	8 5	MCERTS MCERTS	-	-
5-Aylette	F-91 11-5			-	-
Total BTEX	μg/kg	10	MCERTS	-	-
DCPs by CC-MS					
PCBs by GC-MS PCB Congener 28	mg/kg	0.001	MCERTS	_	_
PCB Congener 52	mg/kg	0.001	MCERTS	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-
PCB Congener 101 PCB Congener 118	mg/kg	0.001	MCERTS	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	_
PCB Congener 180	mg/kg	0.001	MCERTS	-	-
Total PCBs	mg/kg	0.007	MCERTS	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected





**Analytical Report Number: 25-058455 Project / Site name: Cardigan** 

Your Order No: 941.02

Tour Order No. 941.02						
Lab Sample Number				732028	732031	732032
Sample Reference	WS01	WS04	WS08			
Sample Number	None Supplied	None Supplied	None Supplied			
Water Matrix				N/A	N/A	N/A
Depth (m)				0.70	1.70	0.60
Date Sampled				24/10/2025	23/10/2025	23/10/2025
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Leachate Analysis)	Units	Test Limit of detection	Test Accreditation Status			

#### 10:1 WAC Leachate

TOTA WAS ESSENTED						
Arsenic	mg/l	0.001	ISO 17025	0.00249	< 0.00100	< 0.00100
Barium	mg/l	0.00005	ISO 17025	0.031	0.0102	0.0262
Cadmium	mg/l	0.0001	ISO 17025	< 0.000100	< 0.000100	< 0.000100
Chromium	mg/l	0.0004	ISO 17025	< 0.00040	0.003	< 0.00040
Copper	mg/l	0.0007	ISO 17025	< 0.00070	0.02	0.024
Mercury	mg/l	0.0005	ISO 17025	< 0.000500	< 0.000500	< 0.000500
Molybdenum	mg/l	0.0004	ISO 17025	0.00315	0.00595	0.00163
Nickel	mg/l	0.0003	ISO 17025	< 0.00030	0.0024	0.00089
Lead	mg/l	0.001	ISO 17025	0.0016	< 0.0010	< 0.0010
Antimony	mg/l	0.0017	ISO 17025	0.0033	< 0.0017	< 0.0017
Selenium	mg/l	0.004	ISO 17025	< 0.0040	< 0.0040	< 0.0040
Zinc	mg/l	0.0004	ISO 17025	0.0084	0.015	0.012
Chloride	mg/l	0.15	ISO 17025	1.4	2.1	1.1
Fluoride	mg/l	0.05	ISO 17025	0.17	0.27	0.1
Sulphate	mg/l	0.045	ISO 17025	150	30	210
Total dissolved solids	mg/l	6	ISO 17025	210	82	280
Total monohydric phenols	mg/l	0.01	ISO 17025	< 0.010	< 0.010	< 0.010
Dissolved organic carbon	mg/l	0.1	NONE	3.54	6.28	4.14

### 10:1 WAC Leachate

Arsenic	mg/kg	0.01	NONE	0.0249	< 0.0100	< 0.0100
Barium	mg/kg	0.0005	NONE	0.31	0.102	0.262
Cadmium	mg/kg	0.001	NONE	< 0.00100	< 0.00100	< 0.00100
Chromium	mg/kg	0.004	NONE	< 0.0040	0.03	< 0.0040
Copper	mg/kg	0.007	NONE	< 0.0070	0.2	0.24
Mercury	mg/kg	0.005	NONE	< 0.00500	< 0.00500	< 0.00500
Molybdenum	mg/kg	0.004	NONE	0.0315	0.0595	0.0163
Nickel	mg/kg	0.003	NONE	< 0.0030	0.024	0.0089
Lead	mg/kg	0.01	NONE	0.016	< 0.010	< 0.010
Antimony	mg/kg	0.017	NONE	0.033	< 0.017	< 0.017
Selenium	mg/kg	0.04	NONE	< 0.040	< 0.040	< 0.040
Zinc	mg/kg	0.004	NONE	0.084	0.15	0.12
Chloride	mg/kg	1.5	NONE	14	21	11
Fluoride	mg/kg	0.5	NONE	1.7	2.7	1
Sulphate	mg/kg	0.45	NONE	1500	300	2100
Total dissolved solids	mg/kg	60	NONE	2100	820	2800
Total monohydric phenols	mg/kg	0.1	NONE	< 0.10	< 0.10	< 0.10
Dissolved organic carbon	mg/kg	1	NONE	35.4	62.8	41.4

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected





4041

### i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		25-058455					
				Client:	Remada Ltd		
Location		Cardigan					
Lab Reference (Sample Number)		732028		Landfill Waste Acceptance Criteria			
Sampling Data		24/10/2025			Limits Stable Non-		
Sampling Date Sample ID		WS01			reactive		
Depth (m)		0.70	Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfil		
Solid Waste Analysis							
TOC (%)	0.1			3%	5%	6%	
oss on Ignition (%) BTEX (µg/kg)	0.4					10%	
Sum of PCBs (mg/kg)	< 10 < 0.007			6000			
Mineral Oil (mg/kg) EH_1D_CU_AL	62			500			
Fotal PAH (WAC-17) (mg/kg)	< 0.85			100			
pH (units)	9.1				>6		
Acid Neutralisation Capacity (mmol / kg)	51				To be evaluated	To be evaluate	
iluate Analysis	10:1		10:1	Limit values for compliance leaching test			
BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l				using BS EN 12457-2 at L/S 10 l/kg (mg/kg)		
	0.00340		0.0240	0.5	2	25	
Arsenic * Barium *	0.00249 0.031		0.0249 0.31	0.5 20	100	25 300	
Cadmium *	< 0.000100		< 0.00100	0.04	1	5	
Chromium *	< 0.00040		< 0.0040	0.5	10	70	
Copper *	< 0.00070		< 0.0070	2	50	100	
Mercury *	< 0.000500		< 0.00500	0.01	0.2	2	
Molybdenum *	0.00315		0.0315	0.5	10	30	
Nickel *	< 0.00030		< 0.0030	0.4	10	40	
ead *	0.0016		0.016	0.5	10	50	
Antimony *	0.0033		0.033	0.06	0.7	5	
Selenium *	< 0.0040		< 0.040	0.1	0.5	7	
Zinc *	0.0084		0.084	4	50	200	
Chloride *	1.4		14	800	15000	25000	
Fluoride* Sulphate *	0.17 150		1.7 1500	10 1000	150 20000	500 50000	
rds*	210		2100	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-	
poc	3.54		35.4	500	800	1000	
	+						
each Test Information							
Stone Content (%)	43.6						
Sample Mass (kg)	2						
Ory Matter (%)	97						
Moisture (%)	3.1						

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.





### i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		25-05	8455					
					Client:	Remada Ltd		
Location		Card	gan					
Lab Reference (Sample Number)					Landfill Waste Acceptance Criteria			
		7320				Limits		
Sampling Date		23/10/				Stable Non- reactive		
Sample ID  Depth (m)	1.70				Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfil	
Solid Waste Analysis								
TOC (%)**	1.3				3%	5%	6%	
Loss on Ignition (%) **	3.7						10%	
STEX (µg/kg) ** Sum of PCBs (mg/kg) **	< 10 < 0.007				6000			
Sum of PCBs (mg/kg) *** Vineral Oil (mg/kg) _{EH_1D_CU_AL}	< 10				500			
Fotal PAH (WAC-17) (mg/kg)	11.5				100			
pH (units)**	8.3					>6		
Acid Neutralisation Capacity (mmol / kg)	16					To be evaluated	To be evaluate	
				40.4	Limit valu	ies for compliance le		
Eluate Analysis	10:1			10:1	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l mg/kg			mg/kg				
Arsenic *	< 0.00100			< 0.0100	0.5	2	25	
Barium *	0.0102			0.102	20	100	300	
Cadmium *	< 0.000100			< 0.00100	0.04	1	5	
Chromium *	0.003			0.03	0.5	10	70	
Copper *	0.02			0.2	2	50	100	
Mercury *	< 0.000500			< 0.00500	0.01	0.2	2	
Molybdenum *	0.00595			0.0595	0.5	10	30	
Nickel * Lead *	0.0024 < 0.0010			0.024 < 0.010	0.4	10 10	40 50	
Antimony *	< 0.0010			< 0.010	0.06	0.7	5	
Selenium *	< 0.0017			< 0.040	0.00	0.5	7	
Zinc *	0.015			0.15	4	50	200	
Chloride *	2.1			21	800	15000	25000	
-luoride*	0.27			2.7	10	150	500	
Sulphate *	30			300	1000	20000	50000	
TDS*	82			820	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	6.28			62.8	500	800	1000	
each Test Information								
Stone Content (%)	16.8							
Sample Mass (kg)	2							
Ory Matter (%)	87							
Moisture (%)	13							

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.





### i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:	25-058455							
					Client:	Remada Ltd		
Location	Cardigan				Landfill Waste Acceptance Criteria			
Lab Reference (Sample Number)		732	032		Limits			
Sampling Date		23/10	/2025			Stable Non-		
Sample ID		WS	08		Inert Waste	reactive HAZARDOUS Ha	Hazardous	
Depth (m)	0.60				Landfill	waste in non- hazardous Landfill	Waste Landfil	
Solid Waste Analysis								
FOC (%)**	< 0.1				3%	5%	6%	
.oss on Ignition (%) **	0.7						10%	
BTEX (µg/kg) ** Sum of PCBs (mg/kg) **	< 10 < 0.007			+	6000 1			
Wineral Oil (mg/kg) EH_1D_CU_AL	< 10				500			
Fotal PAH (WAC-17) (mg/kg)	< 0.85				100			
pH (units)**	7.9					>6		
Acid Neutralisation Capacity (mmol / kg)	12					To be evaluated	To be evaluate	
	10:1			10:1	Limit valu	ues for compliance le	aching test	
luate Analysis	10:1			10:1	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg				
Arsenic *	< 0.00100			< 0.0100	0.5	2	25	
Barium *	0.0262			0.262	20	100	300	
Cadmium *	< 0.000100			< 0.00100	0.04	1	5	
Chromium *	< 0.00040			< 0.0040	0.5	10	70	
Copper *	0.024			0.24	2	50	100	
Mercury *	< 0.000500			< 0.00500	0.01	0.2	2	
Molybdenum *	0.00163			0.0163	0.5	10	30	
Nickel *	0.00089			0.0089	0.4	10	40	
Lead * Antimony *	< 0.0010 < 0.0017			< 0.010 < 0.017	0.5	10 0.7	50 5	
Selenium *	< 0.0017			< 0.017	0.06	0.7	7	
Zinc *	0.012			0.12	4	50	200	
Chloride *	1.1			11	800	15000	25000	
-luoride*	0.1			1	10	150	500	
Sulphate *	210			2100	1000	20000	50000	
TDS*	280			2800	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	4.14			41.4	500	800	1000	
each Test Information								
Stone Content (%)	56.4							
Sample Mass (kg)	2							
Ory Matter (%)	96							
Moisture (%)	3.9							

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.





Analytical Report Number : 25-058455 Project / Site name: Cardigan

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
732028	WS01	None Supplied	0.7	Brown gravelly sand with stones
732029	WS02	None Supplied	0.7	Brown gravelly sand with stones
732030	WS03	None Supplied	0.5	Brown clay and sand with gravel and stones
732031	WS04	None Supplied	1.7	Brown clay and sand with gravel
732032	WS08	None Supplied	0.6	Brown clay and sand with gravel and stones
732033	WS05	None Supplied	0.07	Non Soil. *g
732034	WS06	None Supplied	0.07	Non Soil. *g





**Analytical Report Number: 25-058455** 

**Project / Site name: Cardigan** 

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters Heating/Cooling (PrW) DI Process Water (DI PrW)

Final Sewage Effluent (FSE) Landfill Leachate (LL)

			Method	Wet / Dry	Accreditation
Analytical Test Name	Analytical Method Description	Analytical Method Reference	number	Analysis	Status
Asbestos identification in Soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques	In-house method based on HSG 248, 2021	A001B	D	ISO 17025
pH at 20°C in soil	Determination of pH in soil by addition of water followed by electrometric measurement	In-house method	L005B	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically (up to 30°C)	In-house method	L019B	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with hexane followed by GC-MS	In-house method based on USEPA 8082	L027B	D	MCERTS
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031B	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination	L033B	W	ISO 17025
Dissolved organic carbon 10:1 WAC	, and the second	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L038B	D	MCERTS
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES	In-house method based on Second Site Properties version 3	L038B	D	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
One stage WAC 10:1 leachate preparation	One stage batch test at a liquid to solid ratio of 10 L/kg	BS EN 12457-2-2002	L043B	W	ISO 17025
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance	L046B	W	NONE
Loss on ignition of soil @ 450°C	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	In-house method	L047-PL	D	MCERTS
Speciated PAHs and/or Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS	In-house method based on USEPA 8270	L064B	D	MCERTS
TPH Chromatogram in soil	TPH Chromatogram in soil	In-house method	L064B	D	NONE





**Analytical Report Number : 25-058455** 

**Project / Site name: Cardigan** 

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters Heating/Cooling (PrW) DI Process Water (DI PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
			Humber	Allalysis	Status
BTEX and/or Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS	In-house method based on USEPA 8260	L073B	W	MCERTS
Total petroleum hydrocarbons with carbon banding by GC-FID in soil	Determination of total petroleum hydrocarbons in soil by GC-FID with carbon banding aliphatic and aromatic	In-house method	L076B	D	MCERTS
Total petroleum hydrocarbons with carbon banding by GC-FID/GC-MS HS in soil (Summed Bands)	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS with carbon banding aliphatic and aromatic (Summed Bands).	Calculation	L076B/L088- PL	D/W	NONE
Total petroleum hydrocarbons by GC-FID in soil	Determination of total petroleum hydrocarbons in soil by GC-FID	In-house method	L076B	D	NONE
Chromium III in soil	In-house method by calculation from total Cr and Cr VI	In-house method by calculation	L080- PL/L130B	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry	In-house method	L080-PL	W	MCERTS
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	MCERTS
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser	In-house based on MEWAM Method ISBN 0117516260	L082B	W	ISO 17025
Total petroleum hydrocarbons with carbon banding by HS-GC/MS in soil	Determination of total petroleum hydrocarbons in soil by HS-GC/MS with carbon banding aliphatic and aromatic	In-house method	L088-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement	In-house method	L099-PL	D	MCERTS
Fraction Organic Carbon FOC Automated	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate	In-house method	L009B	D	MCERTS
Soil Descriptions	Textural classification	In-house method	L019B	W	NONE
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES	In-house method based on TRL 447	L038B	D	NONE
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES	In-house method	L038B	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Sulphate, water soluble, in soil (16hr extraction)	In-house method	L038B	D	MCERTS





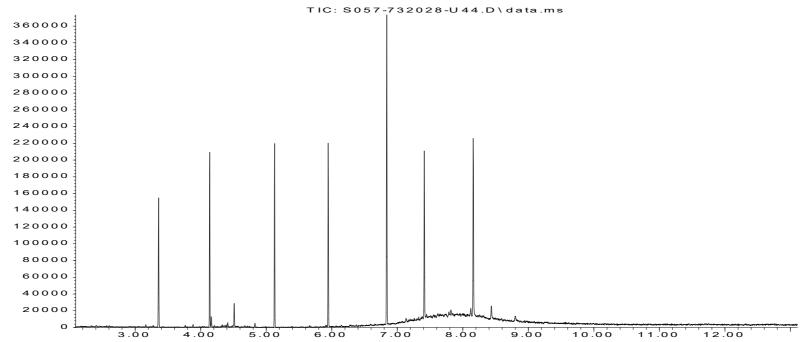
**Analytical Report Number: 25-058455** 

**Project / Site name: Cardigan** 

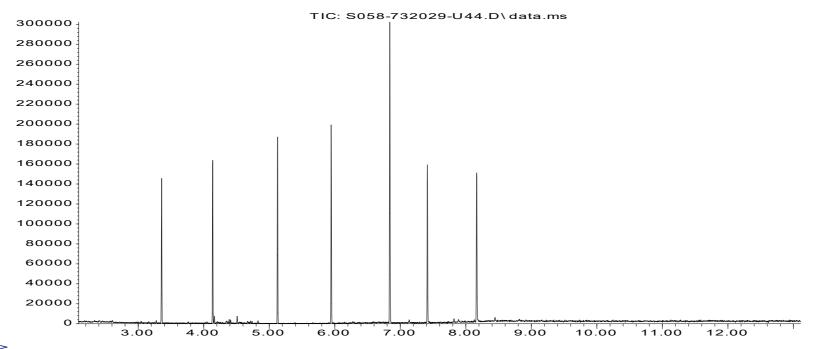
Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters Heating/Cooling (PrW) DI Process Water (DI PrW)

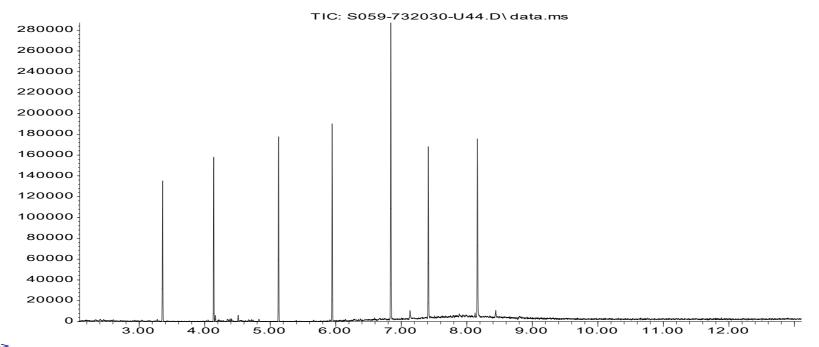
Final Sewage Effluent (FSE) Landfill Leachate (LL)


Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES	In-house method	L038B	D	MCERTS
Water Soluble Nitrate (leachate equivalent)	,,	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction	L078-PL	W	NONE
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction	L078-PL	W	NONE
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser	In-house method	L082B	D	MCERTS
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	MCERTS

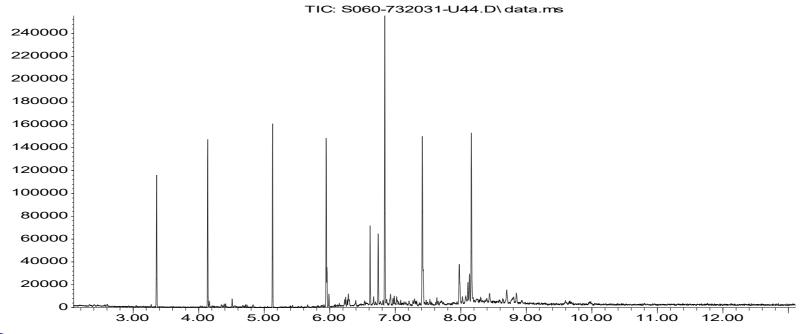
For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.


Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC. Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

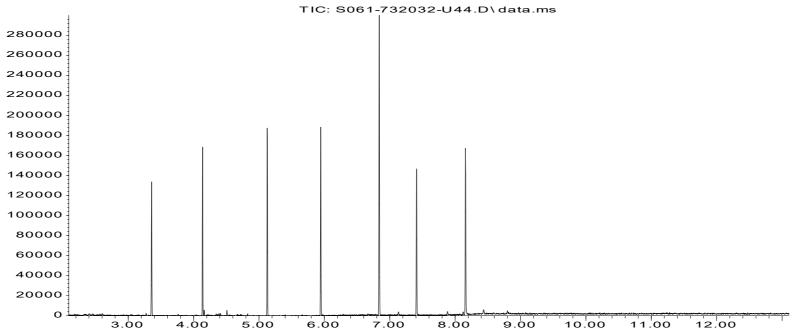
Quality control parameter failure associated with individual result applies to calculated sum of individuals. The result for sum should be interpreted with caution


^{*}g - Unaccredited sample matrix.




T im e -->




Time-->



Time-->



Time->



Time-->





Remada Ltd Forward House 17 High Street Henley-in-Arden Warwickshire B955AA

t:

e: peter.searing@remada.co.uk joe.hughes@remada.co.uk

Your order number:

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 f: 01923 237404

e: info-i2analytical@normecgroup.com

## **Analytical Report Number: 25-058794**

Project / Site name: Cardigan Samples received on: 29/10/2025

Your job number: 941.02 Samples instructed on/ 29/10/2025

Analysis started on:

Analysis completed by: 07/11/2025

Report Issue Number: 1 Report issued on: 07/11/2025

Samples Analysed: 3 soil samples

941.02

Joanna Biolile

Signed:

Joanna Biolik
Senior Reporting Specialist
For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils -4 weeks from reporting

 leachates
 - 2 weeks from reporting

 waters
 - 2 weeks from reporting

 asbestos
 - 6 months from reporting

 air
 - once the analysis is complete

Excel copies of reports are only valid when accompanied by this PDF certificate.

Retention period for records and reports is minimum 6 years from the date of issue of the final report. Some records may be kept for longer according to other legal/best practice requirements.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.





Analytical Report Number: 25-058794 Project / Site name: Cardigan Your Order No: 941.02

Lab Sample Number	734276	734277	734278			
Sample Reference				WS01	WS02	WS05a
Sample Number				None Supplied	None Supplied	None Supplied
Water Matrix				N/A	N/A	N/A
Depth (m)				3.60	2.50	0.70
Date Sampled				24/10/2025	24/10/2025	24/10/2025
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Test Limit of detection	Test Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	11	20	5.3
Total mass of sample received	kg	0.1	NONE	0.6	0.9	1.4

### General Inorganics

General Inorganics						
pH (L099)	pH Units	N/A	MCERTS	7.8	7.6	8
Total Sulphate as SO ₄	%	0.005	MCERTS	0.037	0.058	0.243
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1)	mg/kg	2.5	MCERTS	230	470	2900
Water Soluble SO ₄ 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	114	235	1460
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	5.5	9.4	9.5
Total Sulphur	mg/kg	50	MCERTS	260	330	1300
Total Sulphur	%	0.005	MCERTS	0.026	0.033	0.13
Ammoniacal Nitrogen as NH ₄ +	mg/kg	0.5	MCERTS	0.7	< 0.5	< 0.5
Ammonium as NH ₄ + (10:1 leachate equivalent)	mg/l	0.05	MCERTS	0.05	< 0.05	< 0.05
Water Soluble Nitrate (2:1) as NO₃	mg/kg	2	NONE	< 2.0	290	< 2.0
Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent)	mg/l	5	NONE	< 5.0	150	< 5.0

### **Heavy Metals / Metalloids**

Magnesium (leachate equivalent)	mg/l	2.5	NONE	7.8	16	40
Magnesium (water soluble)	mg/kg	5	NONE	16	32	81

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected





### Analytical Report Number: 25-058794 Project / Site name: Cardigan

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
734276	WS01	None Supplied	3.6	Brown sandy clay with gravel
734277	WS02	None Supplied	2.5	Brown sandy clay
734278	WS05a	None Supplied	0.7	Brown sandy clay with gravel





Analytical Report Number : 25-058794 Project / Site name: Cardigan

Water matrix abbreviations:

Water (BW) Potable Water (PW) Ground Water (GW) Process Waters Heating/Cooling (PrW) DI Process Water (DI PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically (up to 30°C)	In-house method	L019B	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES	In-house method based on TRL 447	L038B	D	NONE
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES	In-house method	L038B	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Sulphate, water soluble, in soil (16hr extraction)	In-house method	L038B	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP- OES	In-house method	L038B	D	MCERTS
Water Soluble Nitrate (leachate equivalent)	Determination of nitrate by reaction with sodium salicylate and colorimetry	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08, 2:1 extraction	L078-PL	W	NONE
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08, 2:1 extraction	L078-PL	W	NONE
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser	In-house method	L082B	D	MCERTS
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement	In-house method	L099-PL	D	MCERTS

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford).
For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).
For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.
Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.
Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Quality control parameter failure associated with individual result applies to calculated sum of individuals. The result for sum should be interpreted with caution





# **APPENDIX E**Laboratory Geotechnical Tests





# **Contract Number: 82174**

Client Ref: **941.02** Client PO: **941.02** 

Client: Remada Limited

Contract Title: Cardigan
For the attention of: Peter Searing

Date Received: 31-10-2025

Date Completed: 14-11-2025

Report Date: 14-11-2025

This report has been checked and approved by:



**Darren Bourne**Quality Senior Technician

Description	Qty
Determination of water content BS EN ISO 17892-1:2014 - * UKAS	5
1 point Liquid & Plastic Limit BS EN ISO 17892-12 - * UKAS	5
Particle Size Distribution BS EN ISO 17892-4 : 5.1 - * UKAS	3

lotes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This test report/certificate shall not be reproduced except in full, without the approval of GEO Site & Testing Services Ltd. Any opinions or interpretations stated - within this report/certificate are excluded from the laboratories UKAS accreditation.

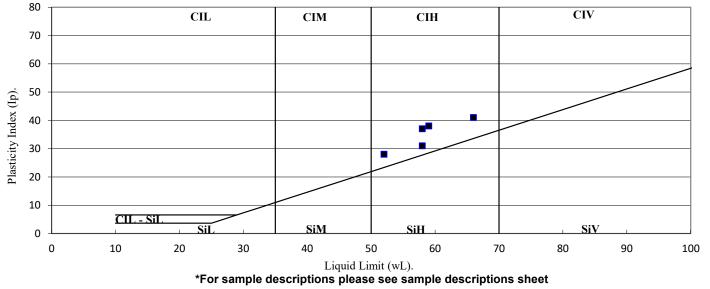
### Approved Signatories:

Brendan Evans (Business Support Co-ordinator) - Darren Bourne (Quality Senior Technician) - Luke Williams (Senior Laboratory Technician) Paul Evans (Director) - Richard John (Quality/Technical Manager) - Shaun Jones (Laboratory manager) Shaun Thomas (Site Manager) - Wayne Honey (HR & HSE Manager)

GSTL GEOTECHNICAL SITE & TESTING LABORATORIES	WATER CONTENT, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX  BS 1377-2:2022 Clause 5.3  BS EN ISO 17892-12:2018+A2:2022 1 Point Liquid Limit  BS EN ISO 17892-1:2014+A1:2022 Determination of Water Content				
Contract Number	82174				
Project Name	Project Name Cardigan				
Date Tested	11/11/2025				
	DESCRIPTIONS				

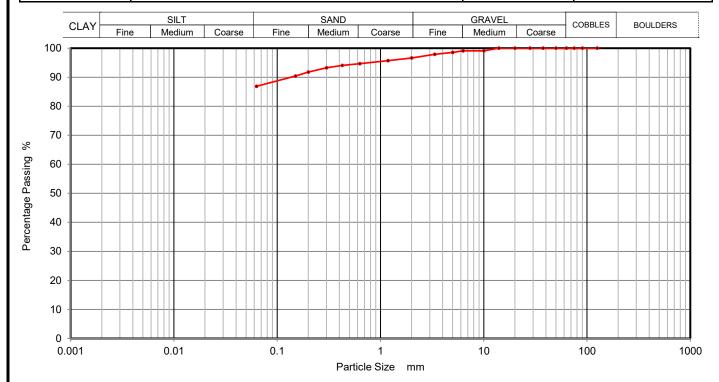
Sample/Hole Reference	Sample Number	Sample Type	Depth (m)		Sample Type Depth (m)		m)	Descriptions
WS02		D	2.90	-		Brown fine to medium gravelly silty CLAY		
WS03		D	5.80	-		Brown fine to medium gravelly silty CLAY		
WS04		D	1.20	-		Brown fine to medium gravelly silty CLAY		
WS06		D	2.70	-		Brown silty CLAY		
WS07		D	1.60	-		Brown silty CLAY		
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				

Operator


Clayton Jenkins

GEOTECHNICAL SITE & TESTING LABORATORIES	WATER CONTENT, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX  BS 1377-2:2022 Clause 5.3  BS EN ISO 17892-12:2018+A2:2022 1 Point Liquid Limit  BS EN ISO 17892-1:2014+A1:2022 Determination of Water Content	
Contract Number	82174	
Project Name	Cardigan	
Date Tested	11/11/2025	
Test Comments	80g/30° Fall cone used	

	Sample Number	Sample Type	De	epth (r	n)	Water Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing 0.425mm %	Factor Applied	Remarks
WS02		D	2.90	-		25.6	58	21	37	85	1.010	CH High Plasticity
WS03		D	5.80	-		31.2	58	27	31	88	0.998	CH High Plasticity
WS04		D	1.20	-		25.2	59	21	38	86	1.025	CH High Plasticity
WS06		D	2.70	-		26.7	52	24	28	100	0.976	CH High Plasticity
WS07		D	1.60	-		28.3	66	25	41	100	1.010	CH High Plasticity
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
				-								
			·	-								
				-								
				-			-				-	·


SYMBOLS : NP = Non Plastic

### **PLASTICITY CHART** BS EN ISO 14688-2:2018 Clause 4.4



Operator Clayton Jenkins

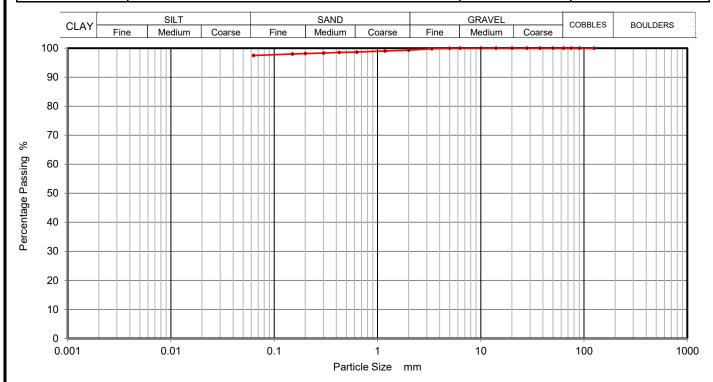
<b>GSTL</b>	PARTICLE SIZE DISTRIBUTION BS 1377-2:2022 Clause 10 &	Contract Number	82174
GEOTECHNICAL SITE & TESTING LABORATORIES	BS EN ISO 17892-4:2016 Wet Sieve, Clause 5.2	Borehole/Pit No.	WS01
Project Name	Cardigan	Sample No.	
O amount a Document in the	Brown slightly fine to medium gravelly fine to coarse sandy silty CLAY	Depth Top	4.00
Sample Description	brown slightly line to medium gravelly line to coarse samy slity CLAT	Depth Base	5.00
Date Tested	12/11/2025	Sample Type	В



Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	99		
6.3	99		
5	99		
3.35	98		
2	97		
1.18	96		
0.63	95		
0.425	94		
0.30	93		
0.20	92		
0.15	90		
0.063	87		

Sample Proportions % dry mass		
Cobbles	0	
Gravel	3	
Sand	10	
Silt and Clay	87	

Grading Analysis	
Uniformity Coefficient	N/A


### Remarks

Preparation and testing in accordance with BS17892 unless noted below

Operator

Jordan Williams

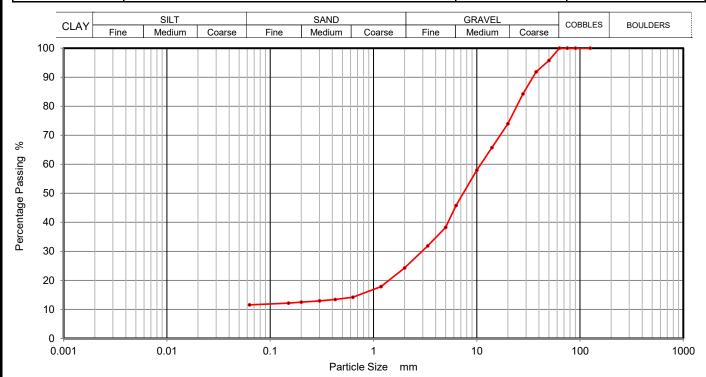
<b>GSTL</b>	PARTICLE SIZE DISTRIBUTION BS 1377-2:2022 Clause 10 & BS EN ISO 17892-4:2016	Contract Number	82174
GEOTECHNICAL SITE & TESTING LABORATORIES			WS02
Project Name	Cardigan	Sample No.	
O and D o and the	Drawn alighth, fine growally alightly fine to ecores conducity CLAV	Depth Top	4.00
Sample Description	Brown slightly fine gravelly slightly fine to coarse sandy silty CLAY	Depth Base	5.00
Date Tested	12/11/2025	Sample Type	В



Siev	ving	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	99		
1.18	99		
0.63	99		
0.425	99		
0.30	98		
0.20	98		
0.15	98		
0.063	97		

Sample Proportions % dry mass		
Cobbles	0	
Gravel	1	
Sand	2	
Silt and Clay	97	

Grading Analysis	
Uniformity Coefficient	N/A


### Remarks

Preparation and testing in accordance with BS17892 unless noted below

Operator

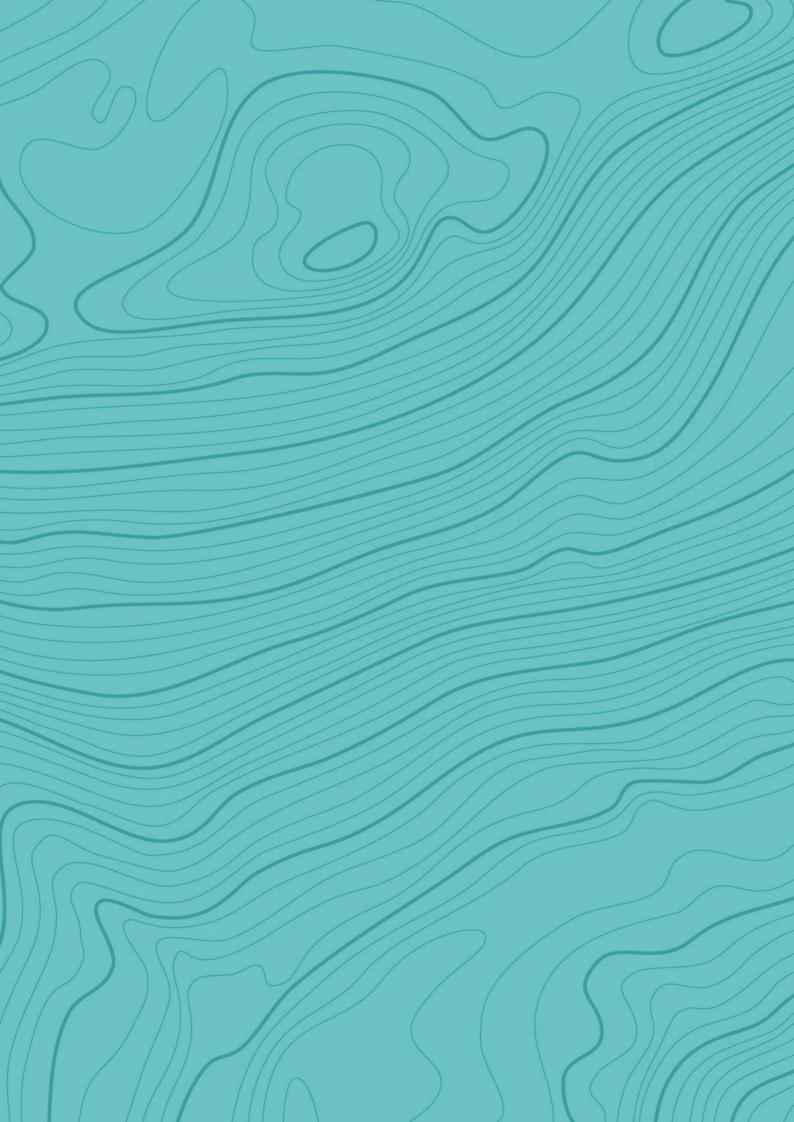
Jordan Williams

GSTL GEOTECHNICAL SITE & YESTING LABORATORIES	PARTICLE SIZE DISTRIBUTION BS 1377-2:2022 Clause 10 & BS EN ISO 17892-4:2016 Wet Sieve, Clause 5.2	Contract Number  Borehole/Pit No.	82174 WS03
Project Name	Cardigan	Sample No.	
0 1 5 1 11	Crow silty/clay fine to agaree condy fine to agaree CRAVEL	Depth Top	2.00
Sample Description	Grey silty/clay fine to coarse sandy fine to coarse GRAVEL	Depth Base	3.00
Date Tested	12/11/2025	Sample Type	В



Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	96		
37.5	92		
28	84		
20	74		
14	66		
10	58		
6.3	46		
5	38		
3.35	32		
2	24		
1.18	18		
0.63	14		
0.425	13		
0.30	13		
0.20	12		
0.15	12		
0.063	12		

Sample Proportions	% dry mass
Cobbles	0
Gravel	76
Sand	12
Silt and Clay	12


Grading Analysis	
Uniformity Coefficient	N/A

### Remarks

Preparation and testing in accordance with BS17892 unless noted below

Operator

Jordan Williams

